Applied Math Seminar
Title: Some Modified Matrix Eigenvalue Problems
Abstract:
This is the title of a well-known numerical linear algebra
survey article by Gene Golub published in 1973. The article
Title: Some Modified Matrix Eigenvalue Problems
Abstract:
This is the title of a well-known numerical linear algebra
survey article by Gene Golub published in 1973. The article
Title: Generating Representative Samples: Neural Networks and More
Abstract: Approximating a probability distribution using a discrete set of points is a fundamental task in modern scientific computation, with applications in uncertainty quantification among other things. We discuss recent advances in this area, including the use of Stein discrepancies and various optimization techniques. In particular, we introduce Stein-Message-Passing Monte Carlo (Stein-MPMC), an extension of the original Message-Passing Monte Carlo model and the first machine-learning algorithm for generating low-discrepancy (space-filling) point sets. Additionally, we present a generalized Subset Selection algorithm, a simpler yet highly effective optimization method.
Title: Translating and evaluating single-cell Boolean network interventions in the multiscale setting
Abstract: Intracellular networks process cellular-level information and control cell fate. They can be computationally modeled using Boolean networks, implicit-time causal models of discrete binary events. These networks can be embedded into cell-agents of an agent-based model to drive cellular behavior. To explore this integration, we identify a set of candidate interventions that induce apoptosis in a cell-survival network of a rare leukemia using exhaustive search simulation, stable motif control, and an individual-based mean field approach (IBMFA). Due to algorithm constraints, these interventions are well-suited for cell-level decisions but less so for multicellular agent-based contexts. To address these limitations, we treat the target control solutions as putative therapeutic targets and develop a pipeline to translate them to continuous-time multicellular, agent-based models. We set the discrete-to-continuous transitions between the Boolean network and multicellular model via thresholding and produce simple computational simulations designed to emulate aspects of experimental and translational biology. Our results reveal that interventions performing equivalently in Boolean network simulations diverge in multiscale settings in both population growth and spatial distribution. Further analysis links these differences to internal network dynamics and the intervention’s proximity to output nodes. This proof-of-concept study highlights the importance of accounting for internal dynamics in multicellular simulations and advances understanding of Boolean network control.
Title: Spatial Dynamics of Vector Borne Diseases
Abstract: Vector-borne diseases affects approximately 1 billion people and accounts for 17% of all infectious diseases. With travel becoming more frequent across the global, it is important to understand the spatial dynamics of vector-borne diseases. Host movement plays a key part on how a disease can be distributed as it enables a pathogen to invade a new environment, and helps the persistence of a disease in locations that would otherwise be isolated. In this talk, we will explore how spatial heterogeneity combines with mobility network structure to influence vector-borne disease dynamics
Title: Radiative transport and optical tomography
Abstract: Optical tomography is the process of reconstructing the optical parameters of the inside of an object from measurements taken on the boundary. This problem is hard if light inside the object is scattered -- if it bounces around a lot and refuses to travel in straight lines. To solve optical tomography problems, we need a mathematical model for light propagation inside a scattering medium. In this talk I'll give a brief introduction to one such model -- the radiative transport model -- and talk a little bit about its behavior and its implications for optical tomography.
Title: Qualitative Assesment of the Role of Temperature Variations on Malaria Transmission Dynamics
Speaker: Folashade B. Agusto, Department of Ecology and Evolutionary Biology, University of Kansa
Abstract:
A new mechanistic deterministic model for assessing the impact of temperature variability on malaria transmission dynamics is developed. The effects of sensitivity and uncertainty in estimates of the parameter values used in numerical simulations of the model are analysed. These analyses reveal that, for temperatures in the range [16-34]°C, the parameters of the model that have the dominant influence on the disease dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes, human recruit- ment rate, mosquito maturation rate, biting rate, transmission probability per contact for susceptible humans, and recovery rate from first-time infections. This study emphasize the combined use of mosquito-reduction strategy and personal protection against mosquito bite during the periods when the mean monthly temperatures are in the range [16.7, 25]°C. For higher daily mean temperatures in the range [26, 34]°C, mosquito-reduction strategy should be emphasized ahead of personal protection. Numerical simulations of the model reveal that mosquito maturation rate has a minimum sensitivity (to the associated reproduction threshold of the model) at T = 24°C and maximum at T = 30°C. The mosquito biting rate has maximum sensitivity at T = 26°C, while the minimum value for the transmission probability per bite for susceptible mosquitoes occurs at T = 24°C. Furthermore, disease burden increases for temperatures between 16°C and 25°C and decreases beyond 25°C. This finding, which supports a recent study by other authors, suggests the importance of the role of global warming on future malaria transmission trends.
Speaker: Devin Willmott
Title: Generative Neural Networks in Semi-Supervised Learning
Abstract: Semi-supervised learning is a relatively new machine learning concept that seeks to use both labeled and unlabeled data to perform supervised learning tasks. We will look at two network types with some promising applications to semi-supervised learning: ladder networks and adversarial networks. For each, we will discuss the motivations behind their architectures & training methods, and derive some favorable theoretical properties about their capabilities.
Title: Matrix Factorization Techniques for Recommender Systems
Abstract: Recommendation Systems apply Information Retrieval techniques to select the online information relevant to a given user. Collaborative Filtering (CF) is currently most widely used approach to build Recommendation System. To address this issue, the collaborative filtering recommendation algorithm is based on singular value decomposition (SVD) . How the SVD works to make recommendations is presented in this master talk.
Jonathan Proctor will be giving a Master's Talk. He will be presenting the paper
Learning About When and Where from Imagery
Speaker: Nathan Jacobs, University of Kentucky
Abstract:
Every day billions of images are uploaded to the Internet. Together they provide many high-resolution pictures of the world, from panoramic views of natural landscapes to detailed views of what someone had for dinner. Many are tagged with when and where the picture was taken, thus providing an opportunity to better understand how the appearance of objects and scenes varies with respect to location and time. This talk describes my work in using learning-based methods to extract geo-spatial properties from imagery. In particular, I will focus on two recent research thrusts: using deep convolutional neural networks to geo-calibrate social network imagery and using such imagery to build geo-temporal models of human appearance.
BIO:
Nathan Jacobs earned a PhD in Computer Science at Washington University in St. Louis (2010). Since then, he has been an Assistant Professor of Computer Science at the University of Kentucky. Dr. Jacobs' research area is computer vision; his specialty is developing learning-based algorithms and systems for processing large-scale image collections. His is a recipient of an NSF CAREER award, and his research has been funded by ARMY-SMDC, ARL, DARPA, Google, IARPA, NGA, and NIH. His current focus is on developing techniques for mining information about people and the natural world from geotagged imagery, including images from social networks, publicly available outdoor webcams, and satellites.