Skip to main content

Applied Math Seminar

Date:
-
Location:
POT 745
Speaker(s) / Presenter(s):
Folshade B. Agusto

Title: Qualitative Assesment of the Role of Temperature Variations on Malaria Transmission Dynamics

Speaker: Folashade B. Agusto, Department of Ecology and Evolutionary Biology, University of Kansa

Abstract:

A new mechanistic deterministic model for assessing the impact of temperature variability on malaria transmission dynamics is developed. The effects of sensitivity and uncertainty in estimates of the parameter values used in numerical simulations of the model are analysed. These analyses reveal that, for temperatures in the range [16-34]°C, the parameters of the model that have the dominant influence on the disease dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes, human recruit- ment rate, mosquito maturation rate, biting rate, transmission probability per contact for susceptible humans, and recovery rate from first-time infections. This study emphasize the combined use of mosquito-reduction strategy and personal protection against mosquito bite during the periods when the mean monthly temperatures are in the range [16.7, 25]°C. For higher daily mean temperatures in the range [26, 34]°C, mosquito-reduction strategy should be emphasized ahead of personal protection. Numerical simulations of the model reveal that mosquito maturation rate has a minimum sensitivity (to the associated reproduction threshold of the model) at T = 24°C and maximum at T = 30°C. The mosquito biting rate has maximum sensitivity at T = 26°C, while the minimum value for the transmission probability per bite for susceptible mosquitoes occurs at T = 24°C. Furthermore, disease burden increases for temperatures between 16°C and 25°C and decreases beyond 25°C. This finding, which supports a recent study by other authors, suggests the importance of the role of global warming on future malaria transmission trends.