Applied and Computational Mathematics Seminar
Applied Math Seminar
Applied Math Seminar
Applied Math Seminar
Applied Math Seminar
Title: Some Modified Matrix Eigenvalue Problems
Abstract:
This is the title of a well-known numerical linear algebra
survey article by Gene Golub published in 1973. The article
Applied Math Seminar
Title: Some Modified Matrix Eigenvalue Problems
Abstract:
This is the title of a well-known numerical linear algebra
survey article by Gene Golub published in 1973. The article
Applied Math Seminar
Title: Generating Representative Samples: Neural Networks and More
Abstract: Approximating a probability distribution using a discrete set of points is a fundamental task in modern scientific computation, with applications in uncertainty quantification among other things. We discuss recent advances in this area, including the use of Stein discrepancies and various optimization techniques. In particular, we introduce Stein-Message-Passing Monte Carlo (Stein-MPMC), an extension of the original Message-Passing Monte Carlo model and the first machine-learning algorithm for generating low-discrepancy (space-filling) point sets. Additionally, we present a generalized Subset Selection algorithm, a simpler yet highly effective optimization method.
Applied Math Seminar
Title: Generating Representative Samples: Neural Networks and More
Abstract: Approximating a probability distribution using a discrete set of points is a fundamental task in modern scientific computation, with applications in uncertainty quantification among other things. We discuss recent advances in this area, including the use of Stein discrepancies and various optimization techniques. In particular, we introduce Stein-Message-Passing Monte Carlo (Stein-MPMC), an extension of the original Message-Passing Monte Carlo model and the first machine-learning algorithm for generating low-discrepancy (space-filling) point sets. Additionally, we present a generalized Subset Selection algorithm, a simpler yet highly effective optimization method.
Applied Math Seminar
Title: Log-Sum Regularized Kaczmarz Algorithms for High-Order Tensor Recovery
Abstract: Sparse and low rank tensor recovery has emerged as a significant area of research with applications in many fields such as computer vision. However, minimizing the $\ell_0$-norm of a vector or the rank of a matrix is NP-hard. Instead, their convex relaxed versions are typically adopted in practice due to the computational efficiency, e.g., log-sum penalty. In this presentation, we propose novel log-sum regularized Kaczmarz algorithms for recovering high-order tensors with either sparse or low-rank structures. We present block variants along with convergence analysis of the proposed algorithms. Numerical experiments on synthetic and real-world data sets demonstrate the effectiveness of the proposed methods.
Applied Math Seminar
Title: Log-Sum Regularized Kaczmarz Algorithms for High-Order Tensor Recovery
Abstract: Sparse and low rank tensor recovery has emerged as a significant area of research with applications in many fields such as computer vision. However, minimizing the $\ell_0$-norm of a vector or the rank of a matrix is NP-hard. Instead, their convex relaxed versions are typically adopted in practice due to the computational efficiency, e.g., log-sum penalty. In this presentation, we propose novel log-sum regularized Kaczmarz algorithms for recovering high-order tensors with either sparse or low-rank structures. We present block variants along with convergence analysis of the proposed algorithms. Numerical experiments on synthetic and real-world data sets demonstrate the effectiveness of the proposed methods.