Skip to main content

APPLIED MATHEMATICS SEMINAR

Applied Math Seminar

Computing Exponentials of Essentially Non-negative Matrices with Entry-wise Accuracy

Speaker: Qiang Ye, University of Kentucky

Abstract:

A real square matrix is said to be essentially non-negative if all of its off-diagonal entries are non-negative. In this talk, I will present new perturbation results and algorithms that demonstrate that the exponential of an essentially non-negative matrix can be computed with entrywise relative accuracy.

Date:
-
Location:
POT 745

Applied Math Seminar

Computing Exponentials of Essentially Non-negative Matrices with Entry-wise Accuracy

Speaker: Qiang Ye, University of Kentucky

Abstract:

A real square matrix is said to be essentially non-negative if all of its off-diagonal entries are non-negative. In this talk, I will present new perturbation results and algorithms that demonstrate that the exponential of an essentially non-negative matrix can be computed with entrywise relative accuracy.

Date:
-
Location:
POT 745

Applied Math Seminar

Computing Exponentials of Essentially Non-negative Matrices with Entry-wise Accuracy

Speaker: Qiang Ye, University of Kentucky

Abstract:

A real square matrix is said to be essentially non-negative if all of its off-diagonal entries are non-negative. In this talk, I will present new perturbation results and algorithms that demonstrate that the exponential of an essentially non-negative matrix can be computed with entrywise relative accuracy.

Date:
-
Location:
POT 745

Applied Math Seminar



Learning Algorithms for Restricted Boltzmann Machines

Speaker: Devin Willmott, University of Kentucky

Abstract: Restricted Boltzmann machines (RBMs) have played a central role in the development of deep learning. In this talk, we will introduce the theoretical framework behind stochastic binary RBMs, give motivation and a derivation for the most commonly used RBM learning algorithm (contrastive divergence), and prove some analytic results related to its convergence properties.

Date:
-
Location:
POT 745

Applied Math Seminar



Learning Algorithms for Restricted Boltzmann Machines

Speaker: Devin Willmott, University of Kentucky

Abstract: Restricted Boltzmann machines (RBMs) have played a central role in the development of deep learning. In this talk, we will introduce the theoretical framework behind stochastic binary RBMs, give motivation and a derivation for the most commonly used RBM learning algorithm (contrastive divergence), and prove some analytic results related to its convergence properties.

Date:
-
Location:
POT 745

Applied Math Seminar



Learning Algorithms for Restricted Boltzmann Machines

Speaker: Devin Willmott, University of Kentucky

Abstract: Restricted Boltzmann machines (RBMs) have played a central role in the development of deep learning. In this talk, we will introduce the theoretical framework behind stochastic binary RBMs, give motivation and a derivation for the most commonly used RBM learning algorithm (contrastive divergence), and prove some analytic results related to its convergence properties.

Date:
-
Location:
POT 745

Applied Math Seminar



Learning Algorithms for Restricted Boltzmann Machines

Speaker: Devin Willmott, University of Kentucky

Abstract: Restricted Boltzmann machines (RBMs) have played a central role in the development of deep learning. In this talk, we will introduce the theoretical framework behind stochastic binary RBMs, give motivation and a derivation for the most commonly used RBM learning algorithm (contrastive divergence), and prove some analytic results related to its convergence properties.

Date:
-
Location:
POT 745

Applied Math Seminar



Learning Algorithms for Restricted Boltzmann Machines

Speaker: Devin Willmott, University of Kentucky

Abstract: Restricted Boltzmann machines (RBMs) have played a central role in the development of deep learning. In this talk, we will introduce the theoretical framework behind stochastic binary RBMs, give motivation and a derivation for the most commonly used RBM learning algorithm (contrastive divergence), and prove some analytic results related to its convergence properties.

Date:
-
Location:
POT 745

Algebraic methods in computational biology

Abstract: As biology has become a data-rich science, more biological phenomena have become amenable to modeling and analysis using mathematical and statistical methods. At the same time, more mathematical areas have developed applications in the biosciences, in particular algebra, discrete mathematics, topology, and geometry. This talk will present some case studies from algebra and discrete mathematics applied to the construction and analysis of dynamic models of biological networks. Some emerging themes will be highlighted, outlining a broader research agenda at the interface of biology and algebra and discrete mathematics. No special knowledge in any of these fields is required to follow the presentation.

Date:
-
Location:
POT 745

Applied Math Seminar--Master's Exam

Title: "A Matrix Analysis of Centrality Measures"



Abstract:  When analyzing a network, one of the most basic concerns is identifying the "important" nodes in the network. What defines "important" can vary from network to network, depending on what one is trying to analyze about the network. In this paper by Benzi and Klymko several different centrality measures, methods of computing node importance, are introduced and compared. We will see that some centrality measures give more information about the network on a local scale, while others help to analyze on a more global scale. In particular, the paper analyzes the behavior of these measures as we let the parameters defining them approach certain limits that appear to be problematic.

Date:
-
Location:
745 Patterson Office Tower