Speaker: Luis Sordo Vieira
Title: The benefits of elliptic curve cryptography
Abstract: We will introduce the basis of elliptic curve cryptography. Roughly speaking ECC is based on the group structure of the points defined on an elliptic curve over a finite field and the difficulty of solving the discrete log problem. The applications are many, such as signature verification and pseudo random generators. No knowledge of algebraic geometry is required.
Speaker: Luis Sordo Vieira
Title: The benefits of elliptic curve cryptography
Abstract: We will introduce the basis of elliptic curve cryptography. Roughly speaking ECC is based on the group structure of the points defined on an elliptic curve over a finite field and the difficulty of solving the discrete log problem. The applications are many, such as signature verification and pseudo random generators. No knowledge of algebraic geometry is required.
Speaker: Luis Sordo Vieira
Title: The benefits of elliptic curve cryptography
Abstract: We will introduce the basis of elliptic curve cryptography. Roughly speaking ECC is based on the group structure of the points defined on an elliptic curve over a finite field and the difficulty of solving the discrete log problem. The applications are many, such as signature verification and pseudo random generators. No knowledge of algebraic geometry is required.
Speaker: Luis Sordo Vieira
Title: The benefits of elliptic curve cryptography
Abstract: We will introduce the basis of elliptic curve cryptography. Roughly speaking ECC is based on the group structure of the points defined on an elliptic curve over a finite field and the difficulty of solving the discrete log problem. The applications are many, such as signature verification and pseudo random generators. No knowledge of algebraic geometry is required.
Speaker: Luis Sordo Vieira
Title: The benefits of elliptic curve cryptography
Abstract: We will introduce the basis of elliptic curve cryptography. Roughly speaking ECC is based on the group structure of the points defined on an elliptic curve over a finite field and the difficulty of solving the discrete log problem. The applications are many, such as signature verification and pseudo random generators. No knowledge of algebraic geometry is required.
Speaker: Luis Sordo Vieira
Title: The benefits of elliptic curve cryptography
Abstract: We will introduce the basis of elliptic curve cryptography. Roughly speaking ECC is based on the group structure of the points defined on an elliptic curve over a finite field and the difficulty of solving the discrete log problem. The applications are many, such as signature verification and pseudo random generators. No knowledge of algebraic geometry is required.
Speaker: Luis Sordo Vieira
Title: The benefits of elliptic curve cryptography
Abstract: We will introduce the basis of elliptic curve cryptography. Roughly speaking ECC is based on the group structure of the points defined on an elliptic curve over a finite field and the difficulty of solving the discrete log problem. The applications are many, such as signature verification and pseudo random generators. No knowledge of algebraic geometry is required.
Computing Exponentials of Essentially Non-negative Matrices with Entry-wise Accuracy
Speaker: Qiang Ye, University of Kentucky
Abstract:
A real square matrix is said to be essentially non-negative if all of its off-diagonal entries are non-negative. In this talk, I will present new perturbation results and algorithms that demonstrate that the exponential of an essentially non-negative matrix can be computed with entrywise relative accuracy.
Computing Exponentials of Essentially Non-negative Matrices with Entry-wise Accuracy
Speaker: Qiang Ye, University of Kentucky
Abstract:
A real square matrix is said to be essentially non-negative if all of its off-diagonal entries are non-negative. In this talk, I will present new perturbation results and algorithms that demonstrate that the exponential of an essentially non-negative matrix can be computed with entrywise relative accuracy.
Computing Exponentials of Essentially Non-negative Matrices with Entry-wise Accuracy
Speaker: Qiang Ye, University of Kentucky
Abstract:
A real square matrix is said to be essentially non-negative if all of its off-diagonal entries are non-negative. In this talk, I will present new perturbation results and algorithms that demonstrate that the exponential of an essentially non-negative matrix can be computed with entrywise relative accuracy.