Discrete CATS Seminar
Title: Lee-Lee Conjecture on geometric description of c-vectors.
Abstract: A quiver is a directed graph without oriented 2 cycles and loops. It has been shown that for an acyclic quiver, the set of non-initial d-vectors (related to the cluster algebra associated to the quiver), the set of positive c-vectors (from a framed quiver), and the set of real Schur roots (from the root system associated to the quiver) coincide. None of these objects are geometric though. In an effort to give a geometric description, Kyu-Hwan Lee and Kyungyong Lee conjectured that the set of roots obtained from a non-self-crossing admissible curve coincide with the set of c-vectors for an acyclic quiver. In this talk, I will describe these objects and talk about this conjecture for the acyclic quivers of finite case.