Title: Model-dependent and model-independent control of biological network models
Abstract: Network models of intracellular signaling and regulation are ubiquitous in systems biology research because of their ability to integrate the current knowledge of a biological process and test new findings and hypotheses. An often asked question is how to control a network model and drive it towards its dynamical attractors (which have been found to be identifiable with phenotypes or stable patterns of activity of the modeled system), and which nodes and interventions are required to do so. In this talk, we will introduce two recently developed network control methods -feedback vertex set control and stable motif control- that use the graph structure of a network model to identify nodes that drive the system towards an attractor of interest (i.e., nodes sufficient for attractor control). Feedback vertex set control makes predictions that apply to all network models with a given graph structure and stable motif control makes predictions for a specific model instance, and this allows us to compare the results of model-independent and model-dependent network control. We illustrate these methods with various examples and discuss the aspects of each method that makes its predictions dependent or independent of the model.