Skip to main content

Applied Math Seminar

Date:
-
Location:
POT 745
Speaker(s) / Presenter(s):
Matthew Macauley, Clemson University

TITLE: Synchrony in a Boolean network model of the L-arabinose operon



ABSTRACT: In genetics, an operon is a segment of DNA that contains several co-transcribed genes, which together form a functional regulatory unit. Operons have primarily been studied in prokaryotes, with both the lactose and tryptophan operons in E. Coli having been classically modeled with differential equations and more recently, with Boolean networks. The L-arabinose operon in E. coli encodes proteins that function in the catabolism of arabinose. This operon has several complex features, such as a protein that acts both as an activator, a DNA looping repressing mechanism, and the lack of inducer exclusion by glucose. In this talk, I will propose a Boolean network model of the ara operon, and then show how computational algebra in Sage establishes that for 11 of the 12 choices of initial conditions, the state space contains a single fixed point that correctly predicts the biology. The final initial condition describes the case where there are medium levels of arabinose and no glucose, and it successfully predicts bistability of the system. Finally, I will compare the state space under synchronous and asynchronous update, and show how the former has several artificial cycles that go away under a general asynchronous update.