Applied and Computational Mathematics Seminar
Applied Math Seminar
Title: Eigenvalue solution via the use of a single random vector
Abtract: In this talk, we show the design of reliable and efficient eigensolvers based on the use of a single random vector in eigenvalue detection strategies. Given a region of interest, some randomized estimators applied to a spectral projector are used to detect the existence of eigenvalues. The reliability of the estimators with a single random vector are studied so as to obtain robust thresholds for eigenvalue detection. This is then combined with repeated domain partitioning to find eigenvalues to a desired accuracy. Preconditioned Krylov subspace methods are used to solve multiple shifted linear systems in the eigenvalue detection scheme and Krylov subspaces are reused for multiple shifts. We also show how another randomized strategy can be used to obtain eigenvectors reliably with little extra costs.
Applied Math Seminar
Title: Uncovering potential interventions for pancreatic cancer patients via mathematical modeling
Abstract: While any cancer diagnosis is life-altering, pancreatic cancer is among the most discouraging to receive because of its extreme difficulty to overcome. Recent literature suggests that the surrounding environment of pancreatic cancer cells could play a key role in their therapeutic response. Thus, there is a growing need for the discovery of intervention strategies that can attack these cancer cells and the microenvironment that protects them. To address this problem, we have built a mathematical model to computationally predict patient outcomes and test discovered control targets. Using amenable control approaches, we were able discover novel control targets as well as validate previously known results. Further, we were able to predict a hierarchy of disease aggression based on which mutations were present, in the sense that some combinations may be more difficult to treat or that the patient might see a faster decline. This is a step forward in aiding the development of personalized medicine, as treatment protocols progress in becoming more patient-specific.
Applied Math Seminar
Title: Low-rank Structured Data Analysis
Abstract: In modern data analysis, the datasets are often represented by large-scale matrices or tensors (the generalization of matrices to higher dimensions). To have a better understanding of the data, an important step is to construct a low-dimensional/compressed representation of the data that may be better to analyze and interpret in light of a corpus of field-specific information. To implement the goal, a primary tool is the matrix/tensor decomposition. In this talk, I will talk about novel matrix/tensor decompositions, CUR decompositions, which are memory efficient and computationally cheap. Besides, I will also discuss how CUR decompositions are applied to develop efficient algorithms or models to robust decomposition and completions and show the efficiency of the algorithms on some real and synthetic datasets.
Applied Math Seminar
Applied Math Seminar
Applied Math Seminar
Title: Identification of control targets in Boolean networks via computational algebra.
Abstract: Many problems in systems biology have the goal of finding strategies to change an undesirable state of a biological system into another state through an intervention. The identification of such strategies is typically based on a mathematical model such as Boolean networks. In this talk we will see how to find node and edge interventions using computational algebra.
Applied Math Seminar
Title: Reliable computation of exterior eigenvalues through matrix functions
Abstract: Exterior eigenvalues of large sparse matrices are needed for
various applications, such as linear stability analysis. These
eigenvalues are difficult to compute efficiently and reliably if they
are much smaller than the dominant eigenvalues in modulus. Traditional
spectral transformations such as Cayley transform are far from reliable.
In this talk, we discuss a simple idea of spectral transformation based
on functions of matrices that maps the desired exterior eigenvalues to
dominant ones. Approximations of the action of matrix functions on
vectors is fundamental for this approach, which can be performed by
rational Krylov subspace methods (RKSM). Numerical experiments for
linear and nonlinear eigenvalue problems demonstrate the reliability of
this method.
Applied Math Seminar
Title: Geometry and Statistics: New Developments in Statistics on Manifolds
Abstract: With the increasing prevalence of modern complex data in non-Euclidean (e.g., manifold) forms, there is a growing need for developing models and theory for inference of non-Euclidean data. This talk first presents some recent advances in nonparametric inference on manifolds and other non-Euclidean spaces. The initial focus is on nonparametric inference based on Fréchet means. In particular, we present omnibus central limit theorems for Fréchet means for inference, which can be applied to general metric spaces including stratified spaces, greatly expanding the current scope of inference. A robust framework based on the classical idea of median-of-means is then proposed which yields estimates with provable robustness and improved concentration. In addition to inferring i.i.d data, we also consider nonparametric regression problems where predictors or responses lie on manifolds. Various simulated or real data examples are considered
Applied Math Seminar
Title: A Feedback Control Architecture for Bioelectronic Devices with Applications to Wound Healing
Abstract: Bioelectronic devices can provide an interface for feedback control of biological processes in real-time based on sensor information tracking biological response. The main control challenges are guaranteeing system convergence in the presence of saturating inputs into the bioelectronic device and complexities from indirect control of biological systems. In this talk, we first derive a saturated-based robust sliding mode control design for a partially unknown nonlinear system with disturbance. Next, we develop a data informed model of a bioelectronic device for in silico simulations. Our controller is then applied to the model to demonstrate controlled pH of a target area. A modular control architecture is chosen to interface the bioelectronic device and controller with a bistable phenomenological model of wound healing to demonstrate closed-loop biological treatment. External pH is regulated by the bioelectronic device to accelerate wound healing, while avoiding chronic inflammation.