Applied and Computational Mathematics Seminar
Applied Math Seminar
Title: An Adaptive Formation Control Architecture for A Team of Quadrotors with Performance and Safety Constraints
Abstract: We propose a novel adaptive formation control architecture for a group of quadrotor systems, under line-of-sight (LOS) distance and relative distance constraints, where the constraint requirements can be both asymmetric and time-varying in nature. Universal barrier functions are adopted in the controller design and analysis, which is a generic framework that can address system with different types of constraints in a unified controller architecture. Furthermore, each quadrotor’s mass is unknown, and the system dynamics are subjected to time-varying external disturbance. Through rigorous analysis, an exponential convergence rate can be guaranteed on the distance tracking errors, while the constraints are satisfied during the operation. A simulation example further demonstrates the efficacy of the proposed control framework.
Applied Math Seminar
Applied Math Seminar
Title: Eigenvalue solution via the use of a single random vector
Abtract: In this talk, we show the design of reliable and efficient eigensolvers based on the use of a single random vector in eigenvalue detection strategies. Given a region of interest, some randomized estimators applied to a spectral projector are used to detect the existence of eigenvalues. The reliability of the estimators with a single random vector are studied so as to obtain robust thresholds for eigenvalue detection. This is then combined with repeated domain partitioning to find eigenvalues to a desired accuracy. Preconditioned Krylov subspace methods are used to solve multiple shifted linear systems in the eigenvalue detection scheme and Krylov subspaces are reused for multiple shifts. We also show how another randomized strategy can be used to obtain eigenvectors reliably with little extra costs.
Applied Math Seminar
Title: Uncovering potential interventions for pancreatic cancer patients via mathematical modeling
Abstract: While any cancer diagnosis is life-altering, pancreatic cancer is among the most discouraging to receive because of its extreme difficulty to overcome. Recent literature suggests that the surrounding environment of pancreatic cancer cells could play a key role in their therapeutic response. Thus, there is a growing need for the discovery of intervention strategies that can attack these cancer cells and the microenvironment that protects them. To address this problem, we have built a mathematical model to computationally predict patient outcomes and test discovered control targets. Using amenable control approaches, we were able discover novel control targets as well as validate previously known results. Further, we were able to predict a hierarchy of disease aggression based on which mutations were present, in the sense that some combinations may be more difficult to treat or that the patient might see a faster decline. This is a step forward in aiding the development of personalized medicine, as treatment protocols progress in becoming more patient-specific.
Applied Math Seminar
Title: Low-rank Structured Data Analysis
Abstract: In modern data analysis, the datasets are often represented by large-scale matrices or tensors (the generalization of matrices to higher dimensions). To have a better understanding of the data, an important step is to construct a low-dimensional/compressed representation of the data that may be better to analyze and interpret in light of a corpus of field-specific information. To implement the goal, a primary tool is the matrix/tensor decomposition. In this talk, I will talk about novel matrix/tensor decompositions, CUR decompositions, which are memory efficient and computationally cheap. Besides, I will also discuss how CUR decompositions are applied to develop efficient algorithms or models to robust decomposition and completions and show the efficiency of the algorithms on some real and synthetic datasets.
Applied Math Seminar
Applied Math Seminar
Applied Math Seminar
Title: Identification of control targets in Boolean networks via computational algebra.
Abstract: Many problems in systems biology have the goal of finding strategies to change an undesirable state of a biological system into another state through an intervention. The identification of such strategies is typically based on a mathematical model such as Boolean networks. In this talk we will see how to find node and edge interventions using computational algebra.
Applied Math Seminar
Title: Reliable computation of exterior eigenvalues through matrix functions
Abstract: Exterior eigenvalues of large sparse matrices are needed for
various applications, such as linear stability analysis. These
eigenvalues are difficult to compute efficiently and reliably if they
are much smaller than the dominant eigenvalues in modulus. Traditional
spectral transformations such as Cayley transform are far from reliable.
In this talk, we discuss a simple idea of spectral transformation based
on functions of matrices that maps the desired exterior eigenvalues to
dominant ones. Approximations of the action of matrix functions on
vectors is fundamental for this approach, which can be performed by
rational Krylov subspace methods (RKSM). Numerical experiments for
linear and nonlinear eigenvalue problems demonstrate the reliability of
this method.