Title: Global-in-time domain decomposition methods for the coupled Stokes and Darcy flows
In this talk, we present decoupling iterative algorithms based on domain decomposition for the time-dependent Stokes-Darcy model, in which different time step sizes can be used in the flow region and in the porous medium. The coupled system is formulated as a space-time interface problem based on either physical interface conditions or equivalent Robin-Robin interface conditions. Such an interface problem is solved iteratively by a Krylov subspace method (e.g., GMRES) which involves at each iteration parallel solution of time-dependent Stokes and Darcy problems. Consequently, local discretizations in both space and time can be used to efficiently handle multiphysics systems with discontinuous parameters. Numerical experiments with nonconforming time grids are considered to illustrate the performance of the proposed methods.