Applied Math Seminar

Date: 
04/15/2021 - 11:00am to 12:00pm
Location: 
Zoom
Speaker(s) / Presenter(s): 
Li Wang, University of Texas at Arlington
Title: A Self-consistent-field Iteration for Orthogonal Canonical Correlation Analysis
Abstract: We propose an efficient algorithm for solving orthogonal canonical correlation analysis (OCCA) in the form of trace-fractional structure and orthogonal linear projections. Even though orthogonality has been widely used and proved to be a useful criterion for visualization, pattern recognition and feature extraction, existing methods for solving OCCA problem are either numerically unstable by relying on a deflation scheme, or less efficient by directly using generic optimization methods. In this paper, we propose an alternating numerical scheme whose core is the sub-maximization problem in the trace-fractional form with an orthogonality constraint. A customized self-consistent-field (SCF) iteration for this sub-maximization problem is devised. It is proved that the SCF iteration is globally convergent to a KKT point and that the alternating numerical scheme always converges. We further formulate a new trace-fractional maximization problem for orthogonal multiset CCA and propose an efficient algorithm with an either Jacobi-style or Gauss-Seidel-style updating scheme based on the SCF iteration. Extensive experiments are conducted to evaluate the proposed algorithms against existing methods, including real-world applications of multi-label classification and multi-view feature extraction. Experimental results show that our methods not only perform competitively to or better than the existing methods but also are more efficient.
Tags/Keywords:
Type of Event (for grouping events):
X
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected

Loading