Title: Effects of Thermoregulation on Human Sleep Patterns: A Mathematical Model of Sleep–Wake Cycles with REM–NREM Subcircuit
Abstract: In this paper we construct a mathematical model of human sleep–wake regulation with thermoregulation and temperature effects. Simulations of this model show features previously presented in experimental data such as elongation of duration and number of REM bouts across the night as well as the appearance of awakenings due to deviations in body temperature from thermoneutrality. This model helps to demonstrate the importance of temperature in the sleep cycle. Further modifications of the model to include more temperature effects on other aspects of sleep regulation such as sleep and REM latency are discussed.