# Applied Math Seminar

**Title:** Algebraic Statistics Applications in Epidemiology**Abstract:** Interactions between single nucleotide polymorphisms (SNPs) and complex diseases have been an important topic throughout epidemiological studies. Previous studies have mostly focused on gene variables at a single locus. In this talk, I will discuss a focused candidate gene study to test the interaction of multiple SNPs with the risk of different types of cancer.

We will exemplify the fact that traditional asympotic results in statistical analysis do not apply in our setting. This is due mainly to the fact that we have a relatively small fixed data set. In our work we develop a new statistical approach using techniques from the field of algebraic statistics. Algebraic statistics focuses on mathematical aspects of statistical models, where algebraic, geometric and combinatorial insights can be useful to study behavior of statistical procedures.

Using the R package algstat, developed by Kahle, Garcia Puente, and Yoshida, we implemented an algebraic statistics method that can test for independence between several variables and the desease. We applied our methods to the study of gene-gene interaction on cancer data obtained from the European case-control study Gen-Air extending previous work by Ricceri, Fassino, Matullo, Roggero, Torrente, Vineis, and Terracini.