Skip to main content

Applied Math Seminar

Date:
-
Location:
POT 745
Speaker(s) / Presenter(s):
Hunter Moseley

Title: Structural and Functional Characterization of Expected and Aberrant Metal Ion Coordination in Proteins

Abstract: Metalloproteins bind and utilize metal ions for a variety of biological purposes.   Due to the ubiquity of metalloprotein involvement throughout these processes across all domains of life, how proteins coordinate metal ions for different biochemical functions is of great relevance to understanding the implementation of these biological processes. Towards these ends, we have improved our methodology for structurally and functionally characterizing metal binding sites in metalloproteins.  Our new ligand detection method is statistically much more robust, producing estimated false positive and false negative rates of ~0.11% and ~1.2%, respectively.  Additional improvements expand both the range of metal ions and their coordination number that can be effectively analyzed.  Also, the inclusion of many additional quality control filters has significantly improved structure-function Spearman correlations as demonstrated by rho values greater than 0.90 for several metal coordination analyses and even one rho value above 0.95.     Also, improvements in bond-length distributions have revealed bond-length modes specific to chemical functional groups involved in multidentation.  Using these improved methods, we analyzed all single metal ion binding sites with Zn, Mg, Ca, Fe, and Na ions in wwPDB, producing statistically rigorous results supporting the existence of both a significant number of unexpected compressed angles and subsequent aberrant metal ion coordination geometries (CGs) within structurally known metalloproteins.  By recognizing these aberrant CGs in our clustering analyses, high correlations are achieved between structural and functional descriptions of metal ion coordination.  Moreover, distinct biochemical functions are associated with aberrant CGs versus non-aberrant CGs.