Title: Optimal Decision-Making in Social Networks
Abstract:
To make decisions we are guided by the evidence we collect and the opinions of friends and neighbors. How do we combine our private beliefs with information we obtain from our social network? To understand the strategies humans use to do so, it is useful to compare them to observers that optimally integrate all evidence. Here we derive network models of rational (Bayes optimal) agents who accumulate private measurements and observe the decisions of their neighbors to make an irreversible choice between two options. The resulting information exchange dynamics has interesting properties: When decision thresholds are asymmetric, the absence of a decision can be increasingly informative over time. In a recurrent network of two agents, the absence of a decision can lead to a sequence of belief updates akin to those in the literature on common knowledge. We then consider large networks under the same framework. Using a combination of asymptotic methods and first passage time calculations, we find that when the network is sufficiently large, most agents decide correctly irrespective of whether the first agent’s decision is right or wrong. Interestingly, individuals in networks with both hasty and deliberate agents can make the right choice more quickly and more often than in networks of identical agents: Observing the choices of a small group of hasty agents can allow the more deliberate agents to make accurate decisions. Our model is tractable and readily generalizable, paving the way for the future study of different social network topologies. We conclude that diverse groups make quicker, more accurate decisions than homogenous groups.