Skip to main content

Applied Math Seminar

POT 745
Speaker(s) / Presenter(s):
Ding Lu, University of Kentucky

Title: Theory and Algorithms for Nonlinear Eigenvector Problems with Affine-Linear Structures

Abstract: Eigenvector-dependent Nonlinear Eigenvalue Problems (NEPv) have long played critical roles in computational physics and chemistry and are becoming increasingly important in numerous data science applications. In this talk, we consider a class of NEPv where the coefficient matrices have a special affine-linear structure. One important origin of affine-linear NEPv is the Rayleigh-quotient-related optimization, including the trace-ratio optimization for dimension reduction and robust Rayleigh-quotient optimization for handling data uncertainties. We will establish variational characterizations for particular affine-linear NEPv, and then provide a geometric interpretation of a Self-Consistent Fields (SCF) iteration for solving the NEPv. The geometric interpretation reveals the global convergence of SCF in many cases and explains its potential non-convergence issues in others. New improvements to SCF, including the local acceleration schemes and the global verification techniques, are also discussed. Numerical experiments demonstrate the effectiveness of our approach.

Type of Event (for grouping events):