Speaker: William Dugan, U Mass Amherst
Title: Faces of generalized Pitman-Stanley polytopes
Abstract:
The Pitman-Stanley polytope is a polytope whose integer
lattice points biject onto the set of plane partitions of a certain
shape with entries in {0 ,1}. In their original paper, Pitman and
Stanley further suggest a generalization of their construction depending
on $m \in {\mathbb N}$ whose integer lattice points biject onto the set
of plane partitions of the same shape having entries in $\{ 0 , 1, ...
, m \}$. In this talk, we give further details of this
generalized Pitman-Stanley polytope, $PS_n^m(\vec{a})$,
demonstrating that it can be realized as the flow polytope of a certain
graph. We then use the theory of flow polytopes to describe the faces of
these polytopes and produce a recurrence for their f-vectors.
William Dugan is a student of Alejandro Morales who is funding this visit.