Title: Optimality of the Neighbor Joining Algorithm and Faces of the Balanced Minimum Evolution Polytope
Abstract: Balanced minimum evolution (BME) is a statistically consistent distance-based method to reconstruct a phylogenetic tree from an alignment of molecular data. In 2008, Eickmeyer, Huggins, Pachter, and myself developed a notion of the BME polytope, the convex hull of the BME vectors obtained from Pauplin's formula applied to all binary trees. We also showed that the BME can be formulated as a linear programming problem over the BME polytope. The BME is related to the Neighbor Joining (NJ) algorithm, now known to be a greedy optimization of the BME principle. Further, the NJ and BME algorithms have been studied previously to understand when the NJ algorithm returns a BME tree for small numbers of taxa. In this talk we aim to elucidate the structure of the BME polytope and strengthen knowledge of the connection between the BME method and NJ algorithm. We first show that any subtree-prune-regraft move from a binary tree to another binary tree corresponds to an edge of the BME polytope. Moreover, we describe an entire family of faces parametrized by disjoint clades. We show that these clade-faces are smaller-dimensional BME polytopes themselves. Finally, we show that for any order of joining nodes to form a tree, there exists an associated distance matrix (i.e., dissimilarity map) for which the NJ algorithm returns the BME tree. More strongly, we show that the BME cone and every NJ cone associated to a tree T have an intersection of positive measure. We end this talk with the current and future projects on phylogenomics with biologists in University of Kentucky and Eastern Kentucky University. This work is supported by NIH.
Applied Math Seminar
Date:
-
Location:
245 Patterson Office Tower
Speaker(s) / Presenter(s):
Professor Ruriko Yoshida, Department of Statistics, University of Kentucky
Event Series: