Title: An Efficient Ascending Auction for Assignment Problems with De Liu, Carlson School of Management- University of Minnesota.
Abstract: We review basic concepts in the theory of auctions. We then introduce a simple ascending auction that allocates heterogeneous objects among bidders with purely private unit demands. Our auction design differs from existing dynamic auctions in a number of ways: it solicits a single new bid from selected bidders at a time, thus minimizing bidder information revelation; it uses a simple and intuitive price adjustment procedure; the seller can set starting prices above his valuations. Despite these new features, (i) the auction stops in a finite time, (ii) sincere bidding at every stage of the auction is an ex-post Nash equilibrium, and (iii) for given valuations, the auction ending prices and revenue depend only on starting prices. We establish sincere bidding and path-independent ending prices using combinatorial arguments. We demonstrate via simulations that our proposed auctions is better than existing auctions in preserving the privacy of the bidders.