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Abstract

The laboratory set up for determining the thermo-physical properties of materials under uniform heating
is investigated. It is possible to derive a system of partial differential equations that models the laboratory
set up. From which a non-dimensional system of partial differential equations can be derived. Once this
system of equations is solved analytically, it is possible to implement two methods that use experimental
data and the analytic solution to find the thermo-physical properties of the material being studied. The
efficacy and precision of these methods is investigated.

1 Introduction

The device of the laboratory set up for defining thermo-physical properties of different materials, which is
based on the concept of heat transfer regime of the third kind, is described in detail in [1,2]. This device is
based on the following concept of the heat transfer process. The specimen of the material to be examined,
which has the shape of cylindrical slab with radius r0 = 15mm and thickness L = 20mm, is placed between
two semi-infinite solid media (such that the length of each medium must be much greater than the depth
of penetration of temperature perturbations) with well documented thermo-physical properties, and the
periodic heating performed at one of the interfaces between the examined specimen and the confining solid
medium. Fig. 1 depicts the principal scheme of 3 contacting solids where the process of conductive heat
transfer takes place. In this figure: 1, 3 – are solids with well-known thermo-physical properties (sample
solids), 2 – the solid specimen under examination, 4 – heating module, which secures the uniform heating
along the interface between the solids 1 and 2.

Assuming that the side surface of this array of three contacting cylindrical solids is ideally insulated, then
the heat transfer within these solids takes place in the x-direction. In addition, to obtain a simpler formulae,
it is necessary to assume that solid 1 in Fig.1 is an ideal insulator of heat, that is, the thermal conductivity
of it is negligibly small. In this case, we have a system of two contacting solids, 2 and 3.

Publications [1,2] examine a situation when the heat flux from the heater 4 is periodic, that is, can
be described by a periodic function. This periodic function can be presented by its Fourier series, which
represents the infinite sum of the constant components of the heat flux and its different harmonics. Instead,
we will examine the situation when the heat flux is a real valued constant function.
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Figure 1: The schematic sketch of three contacting solids (the cross-section of the cylindrical solids by the plane that
contains the axis of symmetry of solids).

Lastly, once the analytic solution of the problem with constant heat flux and the corresponding mea-
surements of the temperatures in the solid are known, then multiple methods that determine the physical
properties of the solid can be readily built. Therefore avoiding the procedure of expanding the analytic
solutions into Fourier series.

Nomenclature

ti Temperature in the i-th solid
x Spatial variable
τ Time
L The length of the solid under examination
ai Thermal diffusivity of the solid i
λi Conductivity of the solid i
r0 The radius of contacting solids
S Area of the cross-section of contacting solids
t0 Ambient temperature
q Given heat flux from the heater

X Non-dimensional distance
Fo Non-dimensional time
Q Non-dimensional Heat Flux
Λ Non-dimensional Conductivity
A Non-dimensional Thermal Diffusivity

2 Mathematical Model of the System of Heat Transfer

Heat conduction in solids 1 and 2 in the x-direction is described by the following equations and boundary
conditions:
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∂(ti − t0)

∂τ
= ai

∂2(ti − t0)

∂x2
, where i = 2, 3, (2.1)

τ = 0, ti = t0, for i = 2, 3, (2.2)

x = 0, λ2
∂t2
∂x

+ q(τ) = 0, (2.3)

x = L, t2 = t3, and λ2
∂t2
∂x

= λ3
∂t3
∂x

, (2.4)

x→∞, t3 → t0, (2.5)

where ti - temperature in the i-th solid; x - spatial variable; τ - time; L - the length of the solid under
examination; ai, λi - thermal diffusivity and conductivity, respectively, of the solid i; r0, S - the radius and
area of the cross-section of contacting solids; t0 - ambient temperature; q - given heat flux from the heater.

It is convenient to convert the variables in the system (2.1)-(2.5) into non-dimensional form by using the
following relationships

θi = λ3
ti − t0
Lq∗0

; X =
x

L
; Fo =

τa3

L2
; Q =

q

q∗0
; Λ =

λ2

λ3
; A =

a2

a3
; (2.6)

where q∗0 = N0/S is the characteristic scale for the heat flux and N0 is the power of the heater. As a result,
the following system of non-dimensional equations is obtained

∂θi
∂Fo

= Ai

[
∂2θi
∂X2

]
, i = 2, 3 Fo > 0, (2.7)

Fo = 0, θi = 0, i = 2, 3, (2.8)

X = 0, Λ
∂θ2

∂X
+ 1 = 0 Fo > 0, (2.9)

X = 1, θ2 = θ3, Λ
∂θ2

∂X
=
∂θ3

∂X
, Fo > 0, (2.10)

X → ±∞, θ3 → 0, Fo > 0. (2.11)

In the above equations it is assumed that the heat flux is constant, i.e. q∗0 = q, Q = 1, and A2 = A, A3 = 1.
The system of equations (2.7)-(2.11) completely defines the temperature field in the system of contacting

solids presented in Fig. 1.

3 Solution of the System of the Partial Differential Equations and
the Analysis of the Solution

3.1 Derivation of the Major Formulae

Since the system of equations (2.7)-(2.11) is linear, it is sufficient to find the solution for when the heat flux
is trivial, Q = 1, and then implement Duhamel’s principle [3] to obtain the solution for when the heat flux
is any constant function.

The solution to the system of equations (2.7)-(2.11) can be obtained through Laplace transforms [3] with
respect to the variable Fo. Denoting

Θi(s,R,X) =

∫ ∞
0

θi(Fo, R,X)e−stdFo, (3.1)
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where s is the complex parameter, and applying the Laplace transform to the system (2.7)-(2.11), yields

sΘi

Ai
=
∂2Θi

∂X2
, i = 2, 3, (3.2)

X = 0, Λ
∂Θ2

∂X
+ Q̄(s) = 0, (3.3)

X = 1, Θ2 = Θ3, Λ
∂Θ̄2

∂X
=
∂Θ3

∂X
, (3.4)

X → ±∞ Θ3 → 0, (3.5)

where Q̄(s) = 1/s.
Solving equations (3.2)-(3.5) results in solutions to Θ2 and Θ3 that can be presented in the following

form:

Θ2(X, s) =
Q̄
√
A

Λ
√
s

g+e
√

s
A (1−X) + g−e

−
√

s
A (1−X)

g+e
√

s
A − g−e−

√
s
A

, (3.6)

Θ3(X, s) =
2Q̄
√
A

Λ
√
s

e−
√
s(X−1)

g+e
√

s
A − g−e−

√
s
A

, (3.7)

where g+ = 1 +
√
A/Λ, g− = 1−

√
A/Λ.

Since the sensors that measure the temperature are located on solid 3, our major interest is to find the
closed-form solution for θ3. Since Q̄(s) = 1/s , then (3.8) has the following form:

Θ3(X, s) =
2
√
A

Λs
√
s

e−
√
s(X−1)

g+e
√

s
A − g−e−

√
s
A

. (3.8)

The latter formula can be converted to the form convenient for applying the inverse Laplace transform:

Θ3(X, s) =
2
√
A

Λg+s3/2

∞∑
k=0

(
g−
g+

)k
e−
√

s
A (
√
A(X−1)+2k+1). (3.9)

Using the table of inverse Laplace transforms available in [3], according to which L−1
{
e−α
√
s/A

s
√
s

}
=

2
√
Foierfc( α

2
√
AFo

), the following formula for the temperature field in the solid 3 for the constant heat flux

is:

θ3(X,Fo) =
2
√
AFo

Λg+

∞∑
k=0

(
g−
g+

)k
ierfc

(√
A(X − 1) + 2k + 1

2
√
AFo

)
, (3.10)

where ierfc(z) = 1√
π
e−z

2 − zerfc(z), erfc(z) = 1− 2√
π

∫ z
0
e(−x2)dx.

It should be noted that the quotient g−/g+ < 1 and the function ierfc(z) is a rapidly decreasing function,
so the series (3.10) rapidly converges.

3.2 Derivation of the Approximation of the Major Formulae

If the process for big values of time (Fo � 1) is of concern, then from formula (3.9) we can easily obtain
the temperature field valid for big values of time. According to the theory of Laplace transforms, expression
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Table 1: Values of thermo-physical parameters.

Parameter r0 L λ2 a2 λ3 a3 q

Dimensions M M W
MK M2/C W

MK M2/C W
M2K

Typical Values 0.015 0.02 2.6 1.85× 10−6 16 4.4× 10−6 5

(3.9) can be presented for the case when s→ 0, and then the inverse Laplace transform can be applied. As
a result, the following asymptotic temperature distribution is obtained:

θ̂3(X,Fo) = 2

√
Fo
π
e−

(X−1)2

4Fo − 1 + β(X − 1)

β
erfc

(
X − 1

2
√
Fo

)
+

1

β
eβ(X−1)+β2Foerfc

(
X − 1

2
√
Fo

+ β
√
Fo

)
,

(3.11)

where β = A
Λ , Fo � 1. If X = 1, then (3.11) reduces to

θ̂3(1, Fo) = 2

√
Fo
π
− 1

β
+

1

β
eβ

2Fo ierfc(β
√
Fo), (3.12)

or to

θ̂3(1, Fo) = 2

√
Fo

π
− b+

b2√
π ∗ Fo

− b4

2Fo
√
π ∗ Fo

+ ..., (3.13)

where b = 1/β.
Expressions (3.11)-(3.13) show that for large times, temperature in the prototype solid depends on only

one non-dimensional parameter b = Λ/A. The obtained solutions can be validated by the numerical experi-
ments described below.

3.3 Numerical Experiments

For the calculations of the numerical experiments, the values found in table 1 were used for the thermo-
physical parameters.

A numerical inverse Laplace transform algorithm can be applied to Θ3 in order to validate θ3. Utilizing the
FT[F, t,M] algorithm written by Abate and Valkó [2] results in a difference between θ3 and FT[Θ3, t, 32]
in the magnitude of 10−12 for observable values of Fo. A description of the FT[F, t,M] algorithm is in
appendix 5.1 of this paper.

In addition, comparing the asymptotic approximation θ̂3 with θ3 using the parameters from table 1 shows
that two terms of the asymptotic approximation is sufficient for approximating θ3 (relative difference < 0.01
at Fo = 54). Fig. 2 shows this comparison at X = 1.

4 Models of the Thermo-Physical Properties of the Solids

Given temperature readings at certain time intervals, ϕ(Fo), it is possible to find the thermal diffusivity, A
and conductivity, Λ, of both solids (thanks to A = a2/a3 and Λ = λ2/λ3, if the properties of solid 3 are
known). For the purpose of testing the methods we used, we added variations to θ3, implementing Mathe-
matica’s RandomReal function on an interval [-0.1, 0.1], using the parameters from table 1. We named this
new function ϕ(k). Figure 3 shows a plot of simulated temperature data with θ3 at X = 1.
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Figure 2: Graph of θ3 compared to the first two terms of θ̂3 at X = 1.

4.1 The Single J-Method

The single-J method is comprised of minimizing the square error function, J , of the analytic solution, θ3,
and the temperature readings, ϕ(Fo), where thermal diffusivity and conductivity, Λ and A, are the variables
of J :

J(A,Λ) =

Fomax∑
k=0

[θ3(Xtest, k, A,Λ)− ϕ(k)]
2
. (4.1)

Xtest was the position at which the measurements were taken. The result of minimizing J is A∗ and Λ∗,
which are the thermo-physical values of the solids.

Figure 3: Plot of ϕ(Fo) at X = 1, using data from table 1.

4.2 The Multi-J Method

The multi-J method is similar to the single J method, using two J functions instead. The first of the square
error functions, J1, is the square error function of the asymptomatic approximation of θ3, θ̂3, and ϕ(Fo),
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Figure 4: Plot of J(A,Λ) at Xtest = 1 tested at integer time up to Fomax = 100, to find parameters A = 0.4204,
Λ = 0.1625. The minimum was found at A∗ = 0.3958, Λ∗ = 0.1508, denoted by the bottom of the triangle
in the figure above.

where the variable is b, since b = A/Λ:

J1(b) =

N∑
k=kmin

[
θ̂3(Xtest, Fo, b)− ϕ(k)

]2
, (4.2)

Note that a kmin value of 1000 is sufficient for the asymptotic approximation to be relatively close to the
analytic solution (the relative difference is less than 10−2). Once this function is minimized, the value of b∗

is then used for the second square error function, J2. J2 is the square error function of θ3 and ϕ(Fo), where
the variable is Λ:

J2(Λ) =

M∑
k=0

[
θ3(Xtest, k,

Λ

b∗
,Λ)− ϕ(k)

]2

. (4.3)

Once Λ∗ is found, then using the relationship with b, it is then possible to find A∗.

4.3 Comparison of the Different Methods

500 attempts to implement the single and multi-J methods were done with the same values. The results of
these 500 attempts can be found in table 2. For the single J method the values were Xtest = 1, A = 0.4204,
Λ = 0.1625, and Fomax = 100. For the multi-J method the values were Xtest = 1, b = 0.3864, A = 0.4204,
Λ = 0.1625, N = 2000, and M = 100. Both the single and multi methods shared the same ϕ(Fo), but a new
ϕ(Fo) was generated for each attempt, and the minimum of the square error functions (4.1)-(4.3) was found
using the Mathematica function FindMinimum. These attempts were run on a Macbook Pro 2015, with a
2.9 GHz Intel Core i5 processor, where the computation time was found using the Mathematica function
Timing.
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Figure 5: Plot of J1(b) at Xtest = 1 tested at integer time from kmin = 1000 to N = 2000, to find the parameter
b = 0.3865. The minimum was found at b∗ = 0.4031.

Figure 6: Plot of J2(Λ) at Xtest = 1 tested at integer time up to M = 100, to find the parameter Λ = 0.1625 (and
subsequently A = 0.4204). The minimum was found at Λ∗ = 0.1774 (and A∗ = 0.4402).

The single J method succeeded in finding the closest values to A and Λ, but, the computation time, while
worse, was not unreasonable. Since the variance of the values was less than 10−3 in both cases, both methods
were consistent. But if the aim is accuracy, the single J method is best. But if the aim is minimizing the
computation time, the multi-J method is better.

Table 2: The results of 500 attempts of both methods.

Mean A∗ Var. A∗ Mean Λ∗ Var. Λ∗ Mean Computation Time (s)
Single J 0.4241 0.000754 0.1646 0.000206 34.44
Multi-J 0.4553 0.000431 0.1830 0.0000752 3.96
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Figure 7: A plot of how the analytic solution with the different parameters found in the single J method and the
multi-J method inputted compares with the data collected for the first 20 data points.

5 Conclusion

The methods that were developed to model the thermo-physical properties of the contacting solids are easy
to implement and fast. The quantitative analysis of the methods demonstrated that both methods were
very consistent. But, single-J method is more accurate while the multi-J method is faster. Furthermore, it
is possible to extend the single-J method to account for different constant heat fluxes by using Duhammel’s
principle.

6 Appendix

6.1 FT Algorithm

To take the inverse Laplace transform of a function numerically, the FT[F,t,M] algorithm approximates the
standard contour in the Bromwich integral,

f(t) =
1

2πi

∫
B

etsF (s)ds, (6.1)

with the function

FT[F, t,M] =
r

M

[
1

2
F (r)ert +

M−1∑
k=1

Re[et·s(θk)F (s(θk))(1 + iσ(θk))]

]
, (6.2)

with the substitutions

r =
2M

5t
, s(θk) = rθ(cot θk + i), σ(θk) = θk + (θk cot θk − 1) cot θk and θk =

kπ

M
. (6.3)

FT[F, t,M] increases in precision and computation time as M increases. However, since the difference
between θ3 and FT[Θ3, t, 32] is in the magnitude of 10−12, then M = 32 is satisfactory for accurate results.

6.2 Applying Duhamel’s Principle for the Complete Solution

The complete solution of θi when Q is not necessarily 1, is given by

θi(X,Fo) =

∫ Fo

0

q(0, τ)
d

dFo

∞∑
n=0

θin(X,Fo − τ)dτ, (6.4)
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thanks to Duhamel’s principle. Since

L
{

d

dFo
θi(X,Fo)

}
= sθ̄i(X, s)− θi(X, 0) = sθ̄i(X, s), (6.5)

thanks to the boundary condition (2.8). Then, since the complete solution is a convolution, it commutes; so

θi(X,Fo) =

∫ Fo

0

q(0, Fo − τ)
d

dFo

∞∑
n=0

θin(X,Fo)dτ. (6.6)

6.2.1 The Complete Analytical Solution

The complete analytical solution for any constant Q, is given by

θ2(X,Fo) =

∫ Fo

0

q(0, Fo − τ)

∞∑
n=0

 √
A

√
πΛ
(

1 + Λ√
A

)
(√ 1

Aτ

)(
−1 + Λ√

A

1 + Λ√
A

)n

∗
(
e

2+4n+4n2−2X+X2

2Aτ

)
∗
(√

A

(
e

(−2+2n+X)2

4Aτ − e
(2n+X)2

4Aτ

)
+ Λ

(
e

(−2−2n+X)2

4Aτ + e
(2n+X)2

4Aτ

))]
dτ, (6.7)

θ3(X,Fo) =

∫ Fo

0

q(0, Fo − τ)

∞∑
n=0

 2
√
π
(

1 + Λ√
A

)
(√1

τ

)(
−1 + Λ√

A

1 + Λ√
A

)n

∗
(
e−

(1+2n+
√
A(−1+X))2

4Aτ

)]
dτ. (6.8)
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