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1 Masters Work

1.1 Introduction

We begin with the Anderson Model, which is a model that explains the quantum mechan-
ical effects of impurities in crystalline structures like salt. The most famous phenomenon
which arose for this model was Anderson Localization, that is, that the impurities in the
structure suppress electron transport. Shortly after this discovery, the mathematical world
became increasingly interested in modeling this situation and the Anderson Model we used
here was created. In this model, one can state and prove Anderson Localization as a the-
orem. One of the biggest pieces of this proof is the Wegner Estimate. We use the Lattice
Z
d to represent atoms, and our electron transfer through impurity will be represented by

random perturbations of the discrete Laplacian on ℓ2(Zd).
To begin our investigations into the Wegner Estimate, we fix a box Λ ⊂ Z

d so that |Λ| is
finite. Throughout this section, we will denote n = |Λ| (Later we will introduce a function
n(E), which will be different). We define H0 on ℓ2(Λ) as

H0f(k) =
∑

|m−k|=1

f(m)

This operator H0 is a bounded self-adjoint operator, with its spectrum σ(H0) = [−2d, 2d].
We want to study a perturbation of this operatorH0 by a random potential. Let {ωj}

n
j=1

be independent identically distributed (i.i.d.) real random variables with probability mea-
sure dµ(ω) = ρ(ω)dω, where ρ ∈ L∞(R). We define

dPΛ =
n
∏

j=1

dµ

Where a random variableX : ΩΛ → R where ΩΛ is the Cartesian Product of the probability
spaces for µ. Then for any subset A ⊆ ΩΛ we have

PΛ(A) =

ˆ

ΩΛ

χA(ω) dµ(ω1) . . . dµ(ωn)

and

EΛ[X] =

ˆ

ΩΛ

X(ω) dµ(ω1) . . . dµ(ωn)

For the rest of this paper, we will remove the Λ for brevity.
Now, we can define the operator

HΛ
ω = H0 + Vω

where

Vω =
n
∑

j=1

ωjΠj =
n
∑

j=1

ωj〈δj , ·〉δj
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1.2 The Wegner Estimate

where Πj is the single site projection onto j. As an example of this we have that in the
case where d = 1, HΛ

ω can be written as a matrix as

HΛ
ω =















ω1 1 0

1
. . .

. . .
. . .

. . . 1

0 1 ωn















For d > 1, the matrix representation becomes a banded matrix dependent on the choice of
ordering of the vertices in Λ. In all dimensions, ωj ’s will only appear on the main diagonal.

1.2 The Wegner Estimate

For this section, E is the expectation for the ensemble ω. We can now ask the following
question: What is the probability that an eigenvalue of HΛ

ω is in an interval I? Our goal
is to eventually prove the following estimate, known as the Wegner Estimate:

Theorem 1.2.1. [9] P{At least one eigenvalue of HΛ
ω is in I} ≤ ||ρ||∞|I||Λ|

But first we need to develop the machinery needed to quantify this result mathemat-
ically. We denote the spectral projector of HΛ

ω onto the interval I as PΛ
ω (I) = χI(H

Λ
ω ).

With this we can now reduce our problem to calculating the TrPΛ
ω (I) and this is now a

discrete random variable that counts the number of eigenvalues of HΛ
ω in I. Hence, we

can rephrase the statement of Theorem 1.2.1 as

P{Tr(PΛ
ω (I)) ≥ 1} ≤ ||ρ||∞|I||Λ|

Immediately applying Chebyschev’s inequality which states for a random variable X and
α ∈ R, that

P{X ≥ α} ≤
1

α
E[X].

We apply this to X = Tr(PΛ
ω ) to get

P{Tr(PΛ
ω (I)) ≥ 1} ≤ E[Tr(PΛ

ω (I))]

We can immediately begin analyzing this expectation, by expanding the trace in orthonor-
mal basis {δj}

n
j=1 in ℓ2(Λ):

TrPΛ
ω (I) =

n
∑

j=1

〈δj , P
Λ
ω (I)δj〉

So using linearity of expectation we have

E[Tr(PΛ
ω (I))] = E[

n
∑

j=1

〈δj , P
Λ
ω (I)δj〉] =

n
∑

j=1

E[〈δj , P
Λ
ω (I)δj〉] (1.1)

To bound each term in the series we will need the fundamental spectral averaging estimate.
Let ω⊥

j be the set of all random variables that are not ωj . Then we can write

HΛ
ω = Hω⊥

j
+ ωjΠj
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1.2 The Wegner Estimate

for all j = 1 . . . n. Note that ωjΠj is a rank-one projection onto the subspace spanned by
δj . The following result of Combes, Germinet, and Klein can be found in [2].

Theorem 1.2.2. (Fundamental Spectral Averaging Estimate) Let φ be a vector in a sep-
arable Hilbert space H, and consider Hs = H0 + sΠφ where Πφ is the projector onto the
subspace spanned by φ. Then

E[〈φ, Ps(I)φ〉] :=

ˆ

dµ(s)〈φ, Ps(I)φ〉 ≤ ||ρ||∞|I|

Before we prove this theorem we will need to state the important result which will allow
us to bound the above integral easily, which is known as Stone’s Formula. More details
can be found in [8].

Theorem 1.2.3. Let H be an operator and let P ([a, b]) and P ((a, b)) be spectral projectors
for H onto their respective intervals. Then

s− lim
ε→0

1

2πi

ˆ

I

(

1

H − E − iε
−

1

H − E + iε

)

dE =
1

2
[P ([a, b]) + P ((a, b))] (1.2)

If a and b are not eigenvalues of H, then we have that

P ([a, b]) =
1

2
[P ([a, b]) + P ((a, b)))]

For the remainder of this paper, we will use RH(z) = 1
H−z which is called theResolvent

for H. Thus in Theorem 1.2.3, the integrand can be rewritten as RH(E+iε)−RH(E−iε).
This notation immediately allows us to simplify writing the calculation in the lemma below.

Lemma 1. Let H0 be a self adjoint operator, and Hs = H0 + sΠφ, with Πφ the same as
Theorem 1.2.2. Then if we denote Rs and R0 as the resolvents of Hs and H0 respectively,
we have

〈φ,Rs(z)φ〉 =
〈φ,R0(z)φ〉

1 + s〈φ,R0(z)φ〉

Proof. We begin with our second resolvent identity:

R0(z)−Rs(z) = R0(z)(H0 − (H0 + sΠφ))Rs(z) = −R0(z)(sΠφ)Rs(z)

So from this we can now use the fact that Πφ is a rank one projection, and we see that

sΠφ(·) = s〈φ, ·〉φ

So we can now multiply both sides by φ and take the inner product of φ with both to yield

〈φ, (R0(z))φ〉 − 〈φ, (Rs(z))φ〉 = −〈φ,R0(z)(s〈φ,Rs(z)φ〉)φ〉) = −s〈φ,R0(z)φ〉〈φ,Rs(z)φ〉

and then you solve for 〈φ,Rs(z)φ〉 to get

〈φ,Rs(z)φ〉 =
〈φ,R0(z)φ〉

1 + s〈φ,R0(z)φ〉

We now have enough to prove Theorem 1.2.2.
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1.2 The Wegner Estimate

Proof. (Theorem 2.2) We choose an interval I = [a, b] so that neither a or b are eigenvalues
of Hs = H0 + sΠφ. Then we begin analyzing

ˆ

R

dµ(s)〈φ, Ps(I)φ〉

And we plug in Stone’s Formula for Ps(I) to get

1

2πi
lim
ε→0

ˆ

R

dµ(s)

ˆ

I
dE〈φ,

(

1

Hs − E − iε
−

1

Hs − E + iε

)

φ〉 (1.3)

We first combine the two resolvents together to get that

1

Hs − E − iε
−

1

Hs − E + iε
=

2iε

(Hs − E)2 + ε2
= 2i · Im(〈φ,Rs(E + iε)φ〉)

Plugging this into (1.3) we have

1

π
lim
ε→0

ˆ

R

dµ(s)

ˆ

I
dE Im(〈φ,Rs(E + iε)φ〉) (1.4)

Now we apply Lemma 1 to 〈φ,Rs(E + iε)φ〉 to expand our integrand as

〈φ,Rs(E + iε)φ〉 =
〈φ,R0(E + iε)φ〉

1 + s〈φ,R0(E + iε)φ〉

Multiplying the numerator and denominator by (〈φ,R0(E+ iε)φ〉)−1 = x+ iy we see that
we get

〈φ,Rs(E + iε)φ〉 =
1

(x+ iy) + s

Plugging this into Equation (1.4) and swapping the order of integration we get

1

π
lim
ε→0

ˆ

I
dE

ˆ

R

dµ(s) Im

(

1

x+ iy + s

)

=
1

π
lim
ε→0

ˆ

I
dE

ˆ

R

dµ(s)
y

(x+ s)2 + y2

Looking at only the integral over s and simplifying using the fact that ρ(s) ∈ L∞(R) we
get:

ˆ

R

ρ(s)ds
y

(x+ s)2 + y2
≤ ||ρ||∞

ˆ

R

y

(x+ s)2 + y2
= ||ρ||∞ · arctan

(

s+ x

y

)∣

∣

∣

∣

∞

−∞

= ||ρ||∞ · π

Therefore we compute the limit as ε→ 0 to get

E[〈φ, Ps(I)φ〉] ≤ ||ρ||∞

ˆ

I
dE ≤ ||ρ||∞|I|

which completes the proof.

So we can now apply Spectral Averaging term by term in our trace expansion in (1.1).
To do this for our setup we have s = ωj , and φ = δj . We now can also use our measure
dµ(ω) = dµΛ(ω) =

∏n
j=1 dµ(ωj), since our measure is now a product measure over the
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1.3 The Minami Estimate

sites j. Then we can apply the spectral averaging result term by term to give

E[TrPΛ
ω (I)] ≤

n
∑

j=1

E{〈δj , T rP
Λ
ωj
(I)δj〉} ≤

n
∑

j=1

||ρ||∞|I| = ||ρ||∞|Λ||I|

1.3 The Minami Estimate

We now rephrase our original question but with the natural extension of asking the same
question about two eigenvalues in the interval I. More on this section can be found in [3].
The result we prove is known as the Minami Estimate

Theorem 1.3.1. [7] P{At least two eigenvalues of HΛ
ω are in I} ≤ (||ρ||∞|I||Λ|)2

This theorem is significant because the probability that two eigenvalues are in the same
interval, is bounded by the probability you would get if the eigenvalues were independent.
To prove this we use a similar idea to section 1 but we first need a lemma about proba-
bilities.

Lemma 2. Let X be a discrete random variable. Then P(X ≥ 2) ≤ E{X(X − 1)}

Proof. We begin with

P(X ≥ 2) ≤
∑

j≥2

P(X ≥ j)

We can expand this out further and see that

∑

j≥2

P(X ≥ j) =
P(X = 2)+ P(X = 3)+ P(X = 4) . . .

P(X = 3)+ P(X = 4) . . .
P(X = 4) . . .

In which we see that for each term P (X = j) shows up j − 1 times, and hence we get

∑

j≥2

P(X ≥ j) =
∑

j≥2

(j − 1)P(X = j) ≤
∑

j≥2

j(j − 1)P(X = j) = E{X(X − 1)}

which is what we wanted to show.

Hence we can now look at our problem with X = Tr(PΛ
ω ) and see that we need to

bound
E{Tr(PΛ

ω )(Tr(PΛ
ω )− 1)} (1.5)

We now state two more Lemmas that are needed to apply spectral averaging and Wegner
to Equation 1.5

Lemma 3. Let Hs = H0 + sW , Ps(J) = χJ(Hs) and suppose that TrPs((−∞, c]) < ∞
for all c ∈ R and s > 0. Then for all a < b and 0 ≤ s ≤ t we have

TrPs((a, b]) ≤ TrP0((−∞, b])− TrPt((−∞, b]) + TrPt((a, b])

And as a consequence we have

Lemma 4. Suppose that W = Πφ is the rank one projector onto φ. Then

TrPs((a, b]) ≤ 1 + TrPt((a, b])
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1.3 The Minami Estimate

Proof. Let 0 ≤ s ≤ t Then for any c ∈ R we have

0 ≤ TrPs((−∞, c])− Tr(Pt(−∞, c]) ≤ 1

where the last inequality is the min-max principle for rank one perturbations and then
apply the previous Lemma

Here we will only apply Lemma 4 because our HΛ
ω is H0 plus a sum of rank one pertur-

bations. To prove Theorem 1.3.1 we only need one more thing needed to apply Lemma
4. For each fixed j, we can suppose that supp µ ⊂ [0,M ]. Then we let ω⊥

j be the set of
random variables that are not ωj . So we let τj be identically distributed to ωj but with
τj ≥M , so we can apply Lemma 4.

Proof. (Theorem 1.3.1) We begin by giving a bound for our X(X − 1) with this new
notation. So consider τj as above. Then

Tr(PΛ
ω (I))(Tr(PΛ

ω (I))−1) =
∑

j∈Λ

〈δj , P
Λ
ω (I)δj〉(Tr(P

Λ
ω (I))−1) ≤

∑

j∈Λ

〈δj , P
Λ
(ω⊥

j ,ωj)
δj〉Tr(P

Λ
(ω⊥

j ,τj)
(I))

Where the inequality is the application of Lemma 4. So now we average over ω and use
independence of the ωj ’s to get

E{TrPΛ
ω (I)(TrPΛ

ω (I)− 1)} ≤
∑

j∈Λ

Eω⊥

j
{TrPΛ

(ω⊥

j ,τj)
}Eωj

{〈δj , P
Λ
ω (I)δj}

But applying spectral averaging to that last term we get that

∑

j∈Λ

Eω⊥

j
{TrPΛ

(ω⊥

j ,τj)
Eωj

(〈δj , P
Λ
ω (I)δj)} ≤ ||ρ||∞|I|

∑

j∈Λ

Eω⊥

j
{TrPΛ

(ω⊥

j ,τj)
(I)}

Now we can use the fact that the set of all τ ’s is also independent of ω so we get

Eω{X(X − 1)} = Eτ{Eω(X(X − 1))}

Therefore we get

||ρ||∞|I|
∑

j∈Λ

Eω⊥

j
{TrPΛ

(ω⊥

j ,τj)
(I)} = ||ρ||∞|I|

∑

j∈Λ

E(ω⊥

j ,τj)
{(TrPΛ

(ωj ,τj)
(I)}

And so now applying Wegner and summing over j we get exactly that

||ρ||∞|I|
∑

j∈Λ

E(ω⊥

j ,τj)
{(TrPΛ

(ωj ,τj)
(I)} ≤ ||ρ||∞|I|

∑

j∈Λ

||ρ||∞|I||Λ| = (||ρ||∞|I||Λ|)2

Where the Wegner Estimate is used in the last line.

1.3.1 Generalized Minami Estimate

The first two estimates Wegner and Minami

Corollary 1. P{At least n eigenvalues of HΛ
ω are in I} ≤ 1

n!(||ρ||∞|I||Λ|)n

8



1.3 The Minami Estimate

Proof. Use the fact that

P(X ≥ n) ≤ P(X(X − 1) . . . (X − (n− 1)) ≥ n!) ≤
1

n!
E[X(X − 1) . . . (X − n− 1)]

We can now extend our procedure we used to prove the Minami estimate to achieve this
result. The base case is the Wegner Estimate, so we just need the inductive step. So we
suppose that

E[X(X − 1) . . . (X − (n− 1))] ≤
1

n!
(||ρ||∞|I||Λ|)n

and we will Try to show it for n + 1. We still use τj ≥ max supp µj . Then for all
k = 1, . . . n,

TrPΛ
ω (I)− k ≤ 1 + TrPΛ

(ω⊥

j ,τj)
(I)− k = TrPΛ

(ω⊥

j ,τj)
(I)− (k − 1) (1.6)

Note that
TrPΛ

ω (I)(TrPΛ
ω (I)− 1) . . . (TrPΛ

ω (I)− (n− 1)) ≥ 0

since it is zero unless we have at least n eigenvalues in I. So we have

TrPΛ
ω (I)(TrPΛ

ω (I)− 1) . . . (TrPΛ
ω (I)− (n− 1))

≤
∑

j

〈δj , P
Λ
ω (I)δj〉(TrP

Λ
(ω⊥

j ,τj)
(I))(TrPΛ

(ω⊥

j ,τj)
(I)− 1) . . .

×(TrPΛ
(ω⊥

j ,τj)
(I)− (n− 1))

We can now apply Theorem 1.2.2 to get

E{〈δj , P
Λ
ω (I)δj〉(TrP

Λ
(ω⊥

j ,τj)
(I))(TrPΛ

(ω⊥

j ,τj)
(I)− 1) . . . (TrPΛ

(ω⊥

j ,τj)
(I)− (n− 1))}

≤ ||ρ||∞|I|Eω⊥

j
{(TrPΛ

(ω⊥

j ,τj)
(I))(TrPΛ

(ω⊥

j ,τj)
(I)− 1) . . . (TrPΛ

(ω⊥

j ,τj)
(I)− (n− 1))}

So now take τ = {τj + ω̃j}j∈Λ where {ω̃j}j∈Λ are independent random variables, indepen-
dent of ω, so that ω̃j has µj for probability distribution, and aj = max supp µj . Using
our previous results along with the inductive hypothesis we get

Eω{TrP
Λ
ω (I)(TrPΛ

ω (I)− 1) . . . (TrPΛ
ω (I)− (n− 1))(TrPΛ

ω (I)− n)}

= E(ω,τ){TrP
Λ
ω (I)(TrPΛ

ω (I)− 1) . . . (TrPΛ
ω (I)− (n− 1))(TrPΛ

ω (I)− n)}

≤ ||ρ||∞|I|
∑

j

E(ω⊥

j ,τj)
{(TrPΛ

(ω⊥

j ,τj)
(I))(TrPΛ

(ω⊥

j ,τj)
(I)− 1) . . . (TrPΛ

(ω⊥

j ,τj)
(I)− (n− 1))}

≤ ||ρ||∞|I|

|Λ|
∑

j=1

(||ρ||∞|I||Λ|)n = (||ρ||∞|I||Λ|)n+1
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2 Qualifying Work

2.1 Anderson Localization

In this section we give a brief discussion about an important theorem used in Minami’s
Paper: Localization. The question we wish to answer is quite natural. As Λ ր Z

d, in
general we no longer have just eigenvalues as part of our spectrum. Therefore, our spectral
measure could have an absolutely continuous or singular continuous part. Localization says
that in certain parts of our spectrum for Hω, this does not occur. But first we must define
the almost sure spectrum.

Theorem 2.1.1. There is a closed set Σ ⊂ R so that σ(Hω) = Σ for P almost all ω.

We also remind the reader briefly about the general decomposition of measures.

Theorem 2.1.2. For any Borel Measure µ, one has that

µ = µac + µsc + µpp

where µac is absolutely continuous with respect to the Lebesgue measure, µsc is singular
with respect to Lebesgue, but is continuous, and µpp is singular with respect to Lebesgue
but is supported on discrete set of Lebesgue measure zero.

So with this we can state the key parts of Localization

Theorem 2.1.3. (Localization) Let Σ be the almost sure spectrum from the above theorem.
Let µ(Hω) be the spectral measure for Hω and let µpp(Hω) be the pure point part of µ(Hω).
Then,

• Near the ”edge” of Σ, there exists an interval [a, b] so that

µ(Hω) ∩ [a, b] = µpp(Hω)

with probability 1. That is the spectral measure of Hω is exclusively pure point.

• (Aizenman, Molchanov) [1] There are s ∈ (0, 1), C > 0, m > 0 and r > 0 such that

E[|GΛ(z;x, y)|s] ≤ Ce−m|x−y|

for any hypercube Λ ⊂ Z
d, x ∈ Λ and y ∈ ∂Λ and

z ∈ {z| Im(z) > 0, |z − E| < r}

Where the GΛ(z;x, y) = 〈δx, RHΛ
ω
(z)δy〉 which is called the Green’s Function of

our equation and is defined to be the x, y matrix element of the Resolvent.

2.2 The Geometric Resolvent Equation

We begin with a discussion on the main tool of exploiting the properties of localization
used in [7]. To do this we need what is called the Geometric Resolvent Equation. The

10



2.2 The Geometric Resolvent Equation

primary goal of this equation is to be able to write the diagonal matrix elements of the
Resolvent on a large scale in terms of the diagonal matrix elements of the Resolvent
at a small scale plus some controllable boundary term that we will be able to apply the
Aizenman and Molchanov version of Theorem 2.1.3. It uses the Green’s function discussed
in the previous section.

Theorem 2.2.1. Let x ∈ Λp ⊂ ΛL, and let (y, y′) ∈ ∂Λp mean that y ∈ Λp, y
′ ∈ ΛL \ Λp

and y,y′ are nearest neighbors, then

GΛL(z;x, x) = GΛp(z;x, x) +
∑

(y,y′)∈∂Λp

GΛp(z;x, y)GΛL(z; y′, x)

Proof. For this proof we will simplify to let χp = χΛp
and Rp(z) = R

H
Λp
ω

(z) and RL(z) =

R
H

ΛL
ω

(z)

(HΛp
− z)χp = χp(HΛL

− z) + [χp, H0]

Now we multiply on the right by RL(z) and on the left by Rp(z) which turns this into

χpRL(z) = Rp(z)χp +Rp(z)[χp, H0]RL(z)

So now we can take each of these terms by δx and use the fact that x ∈ Λp to get

RL(z)δx = Rp(z)δx +Rp(z)[χp, H0]RL(z)δx

so taking each of these terms into 〈δx, ·〉 we get

GΛL(z;x, x) = GΛp(z;x, x) + 〈δx, Rp(z)[χΛ, H0]RΛL
(z)δx〉

And now we only have to worry about the last term. So now we can insert the identity
operator and expand in a basis to get

∑

y′∈ΛL

∑

y∈Λp

GΛp(z;x, y)〈δy, [χp, H0]δy′〉G
ΛL(z; y′, x)

So to compute that middle term in the sum we get a few different cases:

• y, y′ are not nearest neighbors with y ∈ ΛL \ Λp.

• y, y′ are nearest neighbors with y′ ∈ ΛL \ Λp

• y, y′ are nearest neighbors with both in Λp

• y, y′ are not nearest neighbors with both in Λp

we compute these cases separately. It is easy to see that if y, y′ are not nearest neighbors
then

〈δy, [χp, H0]δy′〉 = 0

by properties of our Laplacian. So we only have 2 cases left. We look at if both are nearest
neighbors in Λp Then we see that 〈δy, [χp, H0]δy′〉 = 〈δy, H0δy′〉 − 〈δy, χpH0δy′〉 but since
y′ ∈ Λp we have that

〈δy, H0χpδy′〉 = 〈δy, H0δy′〉 = 〈δy, χpH0δy′〉

11



2.3 Ergodic Stochastic Processes

since y ∈ Λp we don’t need to worry about the nearest neighbors of y outside of Λp. This
leaves only the nearest neighbors of y that are nearest neighbors to y′ with y′ ∈ ΛL \ Λp

in which we get 1 as the result since

〈δy, χpH0δy′〉 − 〈δy, H0χpδy′〉 = 〈δy, δy〉 − 0 = 1

This proves the identity since we sum over precisely these terms in our cases and therefore
we get

GΛL(z;x, x) = GΛp(z;x, x) +
∑

(y,y′)∈∂Λp

GΛp(z;x, y)GΛL(z; y′, x)

There are many versions of Theorem 2.2.1. We provide a different version that uses the
exact same techniques with HΛp

and H0.

Corollary 2. Suppose that ΛL = Z
d and x ∈ Λp. Then we have

GΛp(z;x, x) = G(z;x, x)−
∑

(y,y′)∈∂Λp

GΛp(z;x, y)G(z; y′, x)

Both Theorem 2.2.1 and Corollary 2 will allow us to utilize our theorem on localization
stated above.

2.3 Ergodic Stochastic Processes

We need a theorem for stochastic processes to have the canonical definition of the density
of states. We give a few basic definitions and state the key theorem.

Definition 1. Suppose that Xi are a family of random variables defined on a probability
space (Ω,F ,P). Then, if Tj : Ω → Ω is measure preserving, i.e. P(T−1

j A) = P(A) for all
A ∈ F . These Tj are called ergodic if any invariant A ∈ F has probability 0 or 1. We call
such a collection of random variables and maps an ergodic process.

Hence we can now state the Birkhoff Ergodic Theorem.

Theorem 2.3.1. (Birkhoff Ergodic Theorem) If {Xi}i∈Zd is an ergodic process with E(X0) <
∞ then

lim
L→∞

1

(2L+ 1)d

∑

i∈ΛL

Xi → E(X0)

for P-almost all ω.

2.4 The Density of States

These next sections are based on the work of Kirsch. See [6] for more details.
The density of states measure and its associated functions are incredibly important objects
in the study of random Schrodinger operators. We wish to give a self contained background
on this object and its properties. Let Λ be a cube in Z

d Let φ be in C0(R). Define the
quantity

νL(φ) =
1

|Λ|
Tr(χΛφ(Hω)χΛ) =

1

|Λ|
Tr(φ(Hω)χΛL

)

12



2.4 The Density of States

Where φ(Hω) is defined via the Weierstrass approximation theorem. Our goal is to use
the Reisz-Markov Representation theorem for this linear functional which states that

Theorem 2.4.1. (Riesz-Markov) Let ψ be a positive linear functional (f ≥ 0 implies that
ψ(f) ≥ 0) on C0(R). Then there exists a unique radon measure so that

ψ(f) =

ˆ

R

f(x)dµ(x)

To check that we can apply this theorem we only need to check that if φ ≥ 0, then:

Tr(φ(Hω)χΛL
) =

∑

i∈ΛL

〈δi, φ(Hω)δi〉

and since we have that φ(Hω) is the norm limit approximation by polynomials, we see
that Hωδi = Vωδi = ωi which gives that φ(Hω) = φ(ωi) ≥ 0 since φ is positive. Hence the
sum

∑

i∈ΛL

〈δi, φ(Hω)δi〉 =
∑

i

φ(ωi)〈δi, δi〉 ≥ 0

so we can apply the Riesz-Markov Theorem. This gives us a sequence of measures dνL(λ).
We will show that this measure converges vaguely to a measure ν as L → ∞. We now
remind the reader of vague convergence.

Definition 2. A sequence νn of Borel Measures converges vaguely to a Borel Measure ν
if

ˆ

φ(x)dνn(x) →

ˆ

φ(x)dν(x)

for all φ ∈ C0(R).

We now state the proposition that gives us the almost sure convergence we wish for.

Proposition 1. If φ is a bounded measurable function, then for P almost every ω

lim
L→∞

1

|ΛL|
Tr(φ(Hω)χΛL

) = E(〈δ0, φ(Hω)δ0〉)

Proof. We see that

1

|Λ|
Tr(φ(Hω)χΛL

) =
1

(2L+ 1)d

∑

i

〈δi, φ(Hω)δi〉

It suffices to show that Xi = 〈δi, φ(Hω)δi〉 forms an ergodic stochastic process with Tj
being the shift operators(From Section 2.3). With this we see we get

Xi(Tjω) = 〈δi, φ(Hω)δi〉

= 〈δi, Ujφ(Hω)U
∗
j δi〉

= 〈U∗
j δi, φ(Hω)U

∗
j δi〉

= 〈δi−j , φ(Hω)δi−j〉

= Xi−j(ω)

(2.1)

Where we chose U so that U∗
j δi(n) = δi(n + j) = δi−j(n) Hence we can apply theorem

13



2.4 The Density of States

2.3.1. Thus we see that

1

|ΛL|
Tr(φ(Hω)χΛL

) =
1

(2L+ 1)d

∑

i∈ΛL

Xi → E(X0) = E(〈δ0, φ(Hω)δ0〉)

So we have proven that this holds for fixed φ on a set of full probability. Call this set
Ωφ. This will depend on φ. We can conclude that this holds for all φ ∈

⋂

φΩφ. But this is
an uncountable intersection so we need to be careful, since this intersection of full measure
sets could have not full measure and we don’t even know if this set is measurable. We now
turn our attention to investigating the properties of this set, and proving that it holds for
almost every φ with probability 1.

Theorem 2.4.2. The measures νL converge vaguely to the measure ν P almost surely,
i.e. there is a set Ω0 of probability one, such that

ˆ

φ(λ)dνL(λ) →

ˆ

φ(λ)dν(λ)

for all φ ∈ C0(R) and all ω ∈ Ω0.

Remark 1. The measure ν is non random.

Proof. Take a countable dense set D0 ⊂ C0(R) in the sup-norm topology. We know before
by Proposition 1 each φ ∈ D0 has a set Ωφ with full probability measure so that we have
vague convergence. Now take

Ω0 =
⋂

φ∈D0

Ωφ.

Since Ω0 is a countable intersection of sets of full measure, Ω0 has probability one. So for
ω ∈ Ω0 the convergence holds for all φ ∈ D0. Therefore if φ ∈ C0(R), then there exists a
sequence φn ∈ D0 so that φn → φ uniformly. Therefore we get

|

ˆ

φ(λ)dν(λ)−

ˆ

φ(λ)dνL(λ)|

≤ |

ˆ

φ(λ)dν(λ)−

ˆ

φn(λ)dν(λ)|

+ |

ˆ

φn(λ)dν(λ)−

ˆ

φn(λ)dνL(λ)|

+ |

ˆ

φn(λ)dνL(λ)−

ˆ

φ(Λ)dνL(λ)|

≤ ||φ− φn||∞ + ||φ− φn||∞

+ |

ˆ

φn(λ)dν(λ)−

ˆ

φn(λ)dνL(λ)|

(2.2)

So we can make the first two terms small by taking n large enough. And we can make the
third term small by making L large enough.

Now we know that we can define a few related quantities for this measure

Definition 3. The measure ν defined by

ν(A) = E(〈δ0, χA(Hω)δ0)

14



2.4 The Density of States

for A a Borel set in R is called the density of states measure.
The distribtution function N of ν defined by

N(E) = ν((−∞, E])

is called the Integrated Density of States.

We now can see that we can use Theorem 2.4.2 to get a limit definition for N(E).

Corollary 3. For P-almost every ω the following is true:
For all E ∈ R

N(E) = lim
L→∞

νL((−∞, E]). (2.3)

Remark 2. Note that for fixed E the convergence holds for almost every ω. But this
corollary tells us something stronger: It claims the existence of an E− independent set of
ω such that this limit (2.3) holds for all E.

Proof. (of Corollary) We prove this limit for values of E so that N is continuous at E.
Since N is monotone increasing, the set of discontinuity points of N is at most countable
(This is a fact commonly proved in Real Analysis so we omit the proof). Consequently,
there is a countable set S of continuity points of N is dense. Therefore there is a set of
full probability measure such that

ˆ

χ(−∞,E](λ)dνL(λ) → N(E)

for all E ∈ S.
take ε > 0. Suppose E is any continuity point of N . Then, we find E+, E− ∈ S with
E− ≤ E ≤ E+ such that N(E−)−N(E+) <

ε
2 . So now we can use the monotonicity of N

to see that

N(E)−

ˆ

χ(−∞,E](λ)dνL(λ)

≤ N(E+)−

ˆ

χ(−∞,E](λ)dνL(λ)

≤ N(E+)−N(E−) + |N(E−)−

ˆ

χ(−∞,E](λ)dνL(λ)|

≤ ε

for large L. Similarly, one can extend this argument to see that

N(E)−

ˆ

χ(−∞,E](λ)dνL(λ) ≥ −ε

and so we see that

|N(E)−

ˆ

χ(−∞,E](λ)dνL(λ)| → 0

as L→ ∞. This proves the result for the continuity points, but one can easily extend this
to all points by Proposition 1.

We now turn our attention to a discussion of using the Wegner Estimate, Theorem 1.2.1,
to easily show the regularity of the density of states, and the existence of its radon-nikodym
derivative, a function we will use extensively later.

15



2.5 Point Processes

Theorem 2.4.3. The integrated density of states is absolutely continuous if ||ρ||∞ <∞.

Proof. Let ε > 0, then we see that

N(E+ε)−N(E−ε) =

ˆ

(−∞,E+ε]
dν(λ)−

ˆ

(−∞,E−ε]
dν(λ) = lim

|Λ|→∞

1

|Λ|
E(Tr(PΛ

ω ([E−ε, E+ε])))

≤ lim
|Λ|→∞

1

|Λ|
(2||ρ||∞|Λ|ε) ≤ 2||ρ||∞ε

So this proves the absolute continuity of N .

Since N is absolutely continuous, we can see that N(E) =
´ E
−∞ n(λ)dλ for some function

n(λ). We call this function, n(E) the density of states function. This will be an
important quantity later, as it will end up being the density of our Poisson point process.

2.5 Point Processes

The last thing we need is a discussion of Point Processes, and an important theorem
regarding when a family of point processes is a Poisson point process, allowing us to utilize
a nice decomposition of our box ΛL into independent smaller boxes Λp. This section is
based on [4] and [5]. We begin with defining point processes on R (or any complete
seperable metric space).

Definition 4. Let Xi be a discrete family of random variables defined on R. Then we
define a point process to be

ξ =
n
∑

i=1

δXi

This also is a random measure, but in this case it describes n random objects in R. For
us, these will represent rescaled eigenvalues of HΛ

ω . One might ask what happens when
each of these Xi are i.i.d. as we have been assuming throughout this paper. This leads us
to the Poisson Point Process.

Definition 5. Define K(A) to be the number of events occurring in A. The Poisson point
process can be defined by assuming there is a boundedly finite Borel Measure µ such that
for every finite family of disjoint bounded borel sets {Ai, i = 1, . . . k}

P{K(Ai) = ni, i = 1 . . . k} =
k
∏

i=1

[µ(Ai)]
ni

ni!
e−µ(Ai)

That is, the number of events in disjoint sets forms a Poisson random variable. We call µ
the intensity measure of the process.

There is an extensive theory one can look into regarding these but we will only need a
few tools involving weak convergence of point processes and when a point process converges
weakly to the Poisson point process.

Definition 6. (Weak Convergence of Point Processes) Let ξn be a sequence of point
processes defined on (Ω,F ,P). This sequence converges weakly to ξ defined on a possibly
different probability space (Ω̂, F̂ , P̂) if for any bounded continuous function φ

lim
n→∞

ˆ

φ(ξn)P(dω) =

ˆ

φ(ξn)P̂(dω̂)
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2.6 Proof of Minami’s Result

This is also known to be equivalent to the following two statements:

1. For any φ ∈ C+
0 (R),

lim
n→∞

EP[e
−ξn(φ,ω)] = E

P̂
[e−ξ(φ,ω̂)]

where

ξn(φ) =

ˆ

φ(x)ξn(dx)

2. For any l ≥ 1, nj ≥ 0, and disjoint intervals Ij , j = 1, . . . , l such that

P̂(ξ(∂Ij) > 0) = 0

one has

lim
n→∞

P(ξn(Ij) = nj , j = 1, . . . , l) = P̂(ξ(Ij) = nj , j = 1, . . . , l)

Definition 7. (See Section 11.2 of [5]) A family of point processes ξn =
∑mn

i=1 ξni
is called

a uniformly asymptotically negligible array if

lim
n→∞

sup
i

P(Kni
(A) > 0) = 0

Theorem 2.5.1. (Theorem 11.2.V in [5]) A uniformly asymptotically negligible array
converges weakly to the poisson point process with intensity measure µ if and only if for
all bounded borel sets A with µ(∂A) = 0,

mn
∑

i=1

P(Kni
(A) ≥ 2) → 0 (n→ ∞).

and
mn
∑

i=1

P(Kni
(A) ≥ 1) → µ(A) (n→ ∞).

We omit the proof due to technicality, but the important intuition to have about this that
will be rigorously proven later is that the first condition says that there are no doubled
points, that is there will be no clusters of points. Similarly the second condition says that
the intensity measure is characterized by the probability that the event happens once. We
now have all the material needed to prove the main theorem of Minami in [7].

2.6 Proof of Minami’s Result

We can now define our point process that we will be studying for the remainder of the
next two sections. Define

ξ(Λ, E)(dx) =
∑

j

δ|Λ|(Ej(Λ−E))(x)dx

Where Ej(Λ) are the eigenvalues of HΛ
ω and E is a fixed number. Now we state the main

theorem we will prove in detail in the next section.

Theorem 2.6.1. Suppose that the density of states function n(E) exists at E and is
positive, and that localization holds at E in the sense of Theorem 2.1.3. Then, the point
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2.6 Proof of Minami’s Result

process ξ(Λ, E) converges weakly to the Poisson point process ξ with intensity measure
n(E)dx.

Remark 3. We note that indeed such an E exists as in [1], one can find two conditions
for which such an E exists.

• if ρ(x) is bounded and if there is a compact interval [a, b] such that ρ(x) is non-
decreasing on (−∞, a] and is non-increasing on [b,∞), then there is an E(ρ) such
that localization holds for |E| > E(ρ).

• if ||ρ||∞ is sufficiently small, then localization holds for all E.

With this, we now describe the idea of this theorem. Since we know we are in the local-
ization region, the spectrum will be pure point near our energy E, and the corresponding
eigenfunctions exhibit exponential decay. We now divide our box [0,Λ]d into smaller boxes
Λp of side length ∼ Lα, 0 < α < 1, then most eigenfunctions ψEj

will be centered in one of
the Λp away from the boundary so that on ∂Λp, |ψEj

| will be very small. Thus, the error
in working with

⊕

HΛp is negligible in comparison to working with HΛL . And therefore
if we set

η(p,E)(dx) =
∑

j

δ|ΛL|(Ej(Λp)−E)(dx)

then ξ(Λ, E) can be approximated by

η(L,E) =
∑

p

η(p,E)(dx)

Notice two things here, The scaling of η(p,E) still involve the box at large scale, and
that η(p,E) are independent for different p. We first turn our attention to the asymptotic
negligibly of η(p,E). To see this we compute for any bounded Borel set A

P(η(p,E)(A) ≥ 1) = P(Tr(PHΛp (
A

|ΛL|
+ E)) ≥ 1)

≤ E(Tr(PHΛp (
A

|ΛL|
+ E))) ≤

|A||Λp|

|ΛL|
||ρ||∞ → 0

as L→ ∞. We will use this same strategy to get a more explicit bound later, but for now,
this confirms that η(p,E) is a uniformly asymptotically negligible array and that we now
have to verify theorem 2.5.1.
Step 1. We define the class of test functions A to be functions of the form

f(x) =
n
∑

j=1

ajτ

(x− σj)2 + τ2

with n ≥ 1, τ > 0, aj > 0 and σj ∈ R for j = 1, . . . , n. We now state a theorem regarding
point processes and weak convergence with respect to this space of test functions.

Lemma 5. Let ξn and ξ be point processes on R with intensity measures µn(dx) and µ(dx)
respectively. Suppose that µn and µ are Lipschitz continuous with constant c. Then the
following are equivalent

1. ξn converges weakly to ξ
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2. for any f ∈ A, one has

lim
n→∞

E[exp(−ξn(f))] = E[exp(−ξ(f))].

Proof. I will be assuming this is true, as the proof involves a statement neither Dr. Hislop
or I can figure out, which is the basis for 2.→ 1.

Step 2. Now, let ξ and ξ(Λ, E) be Poisson point processes with intensities µ(dx) =
n(E)dx. We will show that these verify the properties of Lemma 5.

fζ(x) =
τ

(x− σ)2 + τ2

for some arbitrary ζ = σ + iτ ∈ H, where H is the upper half plane. We now wish to
analyze

E[ξ(Λ, E)(fζ)] = E[
∑

j

τ

(|ΛL|(Ej(ΛL)− E))2 + τ2
]

=
1

|ΛL|
E[
∑

j

|ΛL|
−1τ

(Ej(ΛL)− E + |ΛL|−1σ)2 + (|ΛL|−1τ)2
]

=
1

|ΛL|
E[Tr(Im(GΛL(E + |ΛL|

−1ζ)))]

=
1

ΛL

∑

x∈Λ

E[Im(〈δx, R
ΛL(E + |ΛL|

−1ζ)δx〉)].

Applying Lemma 1 to each term in the sum, we get if (〈δx, R
ΛL(E+|ΛL|

−1ζ)δx〉)
−1 = x+iy

then

E[Im(〈δx, R
ΛL(E + |ΛL|

−1ζ)δx〉)] = E[

ˆ ∞

−∞

y

(v − x)2 + y2
ρ(v)dv] ≤ ||ρ||∞

ˆ ∞

−∞
fζ(x)dx

which shows that
E[η(ΛL;E)(dx)] ≤ ||ρ||∞dx

Similarly we can see for ξ that indeed this is true as well by Theorem 1.2.1 since

n(E) = lim
E0→E

N(E)−N(E0)

E − E0
= lim

E→E0

lim
ΛL↑Zd

1

|ΛL|(E − E0)
E[Tr(PHΛL ([E0, E]))]

≤
||ρ||∞|ΛL||E − E0|

|ΛL|(E − E0)
= ||ρ||∞.

Therefore we have that n(E)dx ≤ ||ρ||∞dx

n(E)dx ≤ ||ρ||∞dx

Thus, both η(L,E) and ξ satisfy the conditions of the Lemma. Therefore it suffices to
show that for aj > 0, j = 1, . . . n and ζj = σj + iτ with τ > 0 that

lim
L→∞

E
[

exp{−
1

|ΛL|

∑

j

ajIm(TrGΛL(E + |ΛL|
−1ζj))}

]

= E[exp{−ξ(φ)}] (2.4)
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Where
φ(x) =

∑

j

aj
τ

(x− σj)2 + (τ)2
.

Step 3. We divide [0, L]d into Lαd cubes Λp, p = 1, . . . Lαd with side length L1−α. We
define

Λp = ΛL ∩ Z
d

We also choose the interior of Λp

int(Λp) = {x ∈ Λp| dist(x, ∂Λp) > βln(L)}

And hence for any z ∈ C and any x ∈ int(Λp) we can use our Geometric Resolvent
Equation, Theorem 2.2.1

GΛL(z;x, x) = GΛp(z;x, x) +
∑

(y,y′)∈∂Λp

GΛp(z;x, y)GΛL(z; y′, x)

to get

|
1

|ΛL|

(

Im TrGΛL(z)−
∑

p

Im TrGΛp(z)
)

| ≤ |
1

|ΛL|

∑

x∈ΛL

im(GΛL(z;x, x))−
1

|ΛL|

∑

p

∑

x∈Λp

im(GΛp(z;x, x))|

≤
1

|ΛL|

∑

x∈ΛL

|im(GΛp(z;x, x))|+
1

|ΛL|

∑

x∈ΛL

∑

(y,y′)∈∂Λp

|GΛp(z;x, y)||GΛL(z; y′, x)|−
1

|ΛL|

∑

p

∑

x∈Λp

|GΛp(z;x, x)|

≤
1

|ΛL|

∑

p

∑

x∈Λp\int(Λp)

im(GΛp(z;x, x)) + im(GΛL(z;x, x))

+
1

|ΛL|

∑

p

∑

x∈int(Λp)

∑

(y,y′)∈∂Λp

|GΛp(z;x, y)||GΛL(z; y′, x)|

= AL +BL

And hence we get AL and BL. We will use the fact that we are allowed to choose β
and α to guarantee that E[AL] and E[BL] go to zero. For E[AL] we can estimate since
E[im(GΛp)(z;x, x)] and E[im(GΛL)(z;x, x)] are bounded uniformly by a constant (the
same bound one gets from spectral averaging), we get

E[AL] = O(L−dLαdL(1−α)(d−1)ln(L)) = O(Lα−1ln(L)) → 0

since α < 1. Now for BL we will use our localization estimate, and prove that the
expectation of the fractional power of BL goes to 0.

We will show that E[B
s
2

L ] → 0 as L → ∞. The reason this is enough is precisely a fact
from real analysis. If fL(λ) is a function depdending on lambda, then if

lim
L→∞

ˆ

R

|fL(λ)|dµ(λ) = 0

then for µ almost every λ, we have |fL(λ)| → 0 µ almost everywhere. Then we will also
have

|fL(λ)|
p → 0
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for p ≥ 1. Therefore analyzing E[B
s/2
L ] we get

E[B
s/2
L ] ≤ |ΛL|

−s/2
∑

p

∑

x∈int(Cp)

∑

(y,y′)∈∂Λp

√

E[|GΛp(z;x, y)|s]
√

E[|GΛL(z; y; , x)|s]

so now once again we can use the fact that E[|GΛL(z; y; , x)|s] is bounded by a uniform
constant, and now we can use Theorem 2.1.3 to estimate

E[B
s/2
L ] ≤ C|ΛL|

−s/2
∑

p

∑

x∈int(Cp)

∑

(y,y′)∈∂Λp

e−m|x−y| = O(Ld(2− s
2
)−1Lα(1−d)ln(L)L−mβ)

Therefore if β > 1
m(d(2 − s0) − 1 − α(d − 1)) we have that this term will go to 0 as

L→ ∞. Thus in probability, (B
s
2

L )
2

s = BL → 0 Therefore AL+BL goes to 0 in probability
uniformly for {|z − E| < r} ∩H So instead of 2.4 we can show

lim
L→∞

E
[

exp{−
1

|ΛL|

∑

p

∑

j

ajIm(TrGΛp(E + |ΛL|
−1ζj))}

]

= E[exp{−ξ(φ)}] (2.5)

We can rewrite 2.5, in terms of η(L,E) that we had before. Therefore this can be rewritten
as

lim
L→∞

E[e−η(L,E)(φ)] = E[e−ξ(φ)]

Thus our goal result is to prove the following proposition

Proposition 2. As L → ∞, η(L,E) converges weakly to the Poisson point process with
intensity measure n(E)dx.

We have already shown that η(Λp;E) is an asymptotically negligible array. Hence if we
can show that

∑

p

P(η(Λp;E)(A) ≥ 1) → n(E)|A| (2.6)

and
∑

p

P(η(Λp;E)(A) ≥ 2) → 0 (2.7)

With the Minami estimate, it is easiest to show 2.7 via Theorem 1.3.1. This is because
for each of these measures we can look at the trace of the spectral projector to get

P(TrP |ΛL|(HΛp−E)(A) ≥ 2) ≤ (||ρ||∞|A|L(α−1)d)2

and therefore the sum of all terms over p gives the estimate

∑

p

P(η(Λp;E)(A) ≥ 2) ≤ (||ρ||∞|A|L−αd)2Lαd = O(L−αd)

and therefore this goes to 0 as L→ ∞ for all borel sets A. The only thing left to show is
(2.6). So to do this, consider fζ like before, then we get

E[η(Λp;E)(fζ)] =
1

|ΛL|
E
[

∑

x∈int(Λp)

+
∑

x∈Λp\int(Λp)

im(GΛp(λ;x, x))
]

where λ = E + |λL|
−1ζ. Now in the same way we estimated AL we get the second term
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2.6 Proof of Minami’s Result

in the sum being
O(L−dLα(d−1)ln(L)) = O(L−αd) → 0

Now for the first term, for x ∈ int(Λp) one has the other geometric resolvent equation,
Corollary 2,

GΛp(z;x, x) = G(z;x, x)−
∑

(y,y′)∈∂Λp

GΛp(z;x, y)G(z; y′, x)

And therefore we see that

|E[im(GΛp(λ;x, x))]− E[im(G(λ;x, x))]

≤
∑

(y,y′)∈∂Λp

E[|GΛp(λ;x, y)|G(λ; y′, x)|]

≤ (|ΛL|/τ)
2−s

∑

(y,y′)∈∂Λp

E[|GΛp(λ;x, y)|
s
2 |G(λ; y′, x)|

s
2 ]

Where we use Hölder’s inequality with s/2 and 1− s/2 while the simple resolvent bound

|G(λ;x, y)| ≤
1

im(λ)
; |GΛL(λ; y′, x)| ≤

1

im(λ)

for the 1− s
2 term. Therefore, if we use cauchy-schwartz in the sum term we get

(|ΛL|/τ)
2−s

∑

(y,y′)∈∂Λp

√

E[|GΛp(λ;x, y)|s]
√

E[|G(λ; y′, x)|s]

= O(L(3−s)d−1L−α(d−1)L−mβ)

if we once again use Theorem 2.1.3 to estimate this and this goes to zero if we choose
β large enough, and this could be larger than our previous β. But, this means that
independent of x, y′ ∈ Z

d and λ ∈ H, we get

E[im(GΛp(λ;x, x))] = E[im(G(λ;x, x))] + o(1)

But now, we can use the fact that the expectation of our inner product with the resolvent
is the integral of the resolvent with respect to the density of states measure which is
absolutely continuous with respect to the lebesgue measure. And hence, after pulling the
imaginary part out of the integral, we get

E[im(G(λ;x, x))] =

ˆ

R

im(
1

u− λ
)n(u)du

which we get, with λ = E + |ΛL|
−1ζ

ˆ

R

n(u)
|ΛL|

−1τ

(u− (E + |ΛL|−1σ))2 + (|ΛL|−1τ)2
du→ n(E)π

as L → ∞ by the fact that we can change variables from |ΛL|
−1σ = x and |ΛL|

−1τ = y
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2.6 Proof of Minami’s Result

and so we can transform this into

lim
(x,y)→(0,0)

ˆ

R

n(u)
y

(u− E − x)2 + y2
du

since n(u) ∈ L1(R), and
1

π

y

(u− E − x)2 + y2

is an approximation of the identity in y, and will converge to δ(u− E). Therefore we get

E[η(Λp;E)(fζ)] ∼ πn(E)
|int(Λp)|

|ΛL|
∼ πn(E)L−αd

So summing over p we get

∑

p

P(η(Λp;E)(fζ)) ≥ 1) →
∑

p

L−αdπn(E) = πn(E)

Since one can estimate χA(x) by a linear combination of fζ ’s, we get

∑

p

P(η(Λp;E)(A) ≥ 1) → n(E)|A|

which is what we wanted to show. Therefore we have that η(L;E) → ξ weakly to the
Poisson point process with intensity measure n(E)dx. Thus, the proof is complete.
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