Abstract

On the Brunn Minkowski Inequality and a Minkowski Problem for Nonlinear Capacitiies

by John Lewis

In this seminar we discuss two classical problems in convex geometry. The first problem is a Brunn-Minkowski inequality for a nonlinear capacity, $Cap_{\mathcal{A}}$:

$$\left[\operatorname{Cap}_{\mathcal{A}}(\lambda E_1 + (1-\lambda)E_2)\right]^{\frac{1}{(n-p)}} \ge \lambda \left[\operatorname{Cap}_{\mathcal{A}}(E_1)\right]^{\frac{1}{(n-p)}} + (1-\lambda)\left[\operatorname{Cap}_{\mathcal{A}}(E_2)\right]^{\frac{1}{(n-p)}}$$

when $1 , and <math>E_1, E_2$ are convex compact sets with positive \mathcal{A} capacity. In the second part of this talk we discuss a Minkowski existence problem for a certain measure associated with a compact convex set E with nonempty interior and its \mathcal{A} harmonic capacitary function in the complement of E. If μ_E denotes this measure, then the Minkowski problem we consider in this setting, is that for a given finite Borel measure $\tilde{\mu}$ with support in the unit sphere of Euclidean n space, find necessary and sufficient conditions for which there exists E as above with $\mu_E = \tilde{\mu}$.