Algebra Seminar

Date: 
10/09/2019 - 2:00pm to 3:00pm
Location: 
745 POT
Speaker(s) / Presenter(s): 
Kalina Mincheva, Yale University

Title: Prime tropical ideals

Abstract: Tropical geometry provides a new set of purely combinatorial tools, which has been used to approach classical problems. In tropical geometry most algebraic computations are done on the classical side - using the algebra of the original variety. The theory developed so far has explored the geometric aspect of tropical varieties as opposed to the underlying (semiring) algebra and there are still many commutative algebra tools and notions without a tropical analogue. In the recent years, there has been a lot of effort dedicated to developing the necessary tools for commutative algebra using different frameworks, among which prime congruences, tropical ideals, tropical schemes. These approaches allows for the exploration of the  properties of tropicalized spaces without tying them up to the original varieties and working with geometric structures inherently defined in characteristic one (that is, additively idempotent) semifields. In this talk we explore the relationship between tropical ideals and congruences to conclude that the variety of a non-zero prime tropical ideal is either empty or consists of a single point. This is joint work with D. Jo\'o.

Type of Event (for grouping events):
X
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected

Loading