▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Davey-Stewartson II Equation: Dispersive Asymptotics, Soliton Solutions

Peter A. Perry

University of Kentucky

May 15, 2014

Preliminaries

DS II Equation

efocussing Case: Disp

Focussing Case: Soliton Solution

Open Problems

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bill of Fare

- 1. Preliminaries
- 2. The Davey-Stewartson II Equation
- 3. Defocussing Equation: Large-Time Behavior
- 4. Focussing Equation: One-Soliton Solution
- 5. Open Problems

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Notation (1 of 3): Spaces

- $\begin{array}{ll} C^0(\mathbb{C}) & \text{The Banach space of continuous functions } f \text{ on } \mathbb{C} \text{ with } \\ \|f\|_{C^0(\mathbb{C}} = \sup_{z \in \mathbb{C}} |f(z)| \text{ finite } \end{array}$
- $\begin{array}{ll} H^{1,1}(\mathbb{C}) & \text{The Hilbert space of } L^2(\mathbb{C}) \text{ functions } u \text{ with} \\ & (1+|\,\cdot\,|)u(\,\cdot\,) \text{ and } \nabla u \text{ in } L^2(\mathbb{C}) \end{array}$
 - $\begin{aligned} L^{p}(L^{q}) & \text{The space of functions } a(z,\zeta) \text{ with} \\ & \left(\int \left| \int |a(z,\zeta)|^{q} d\zeta \right|^{1/q} dA(z) \right)^{1/p} \end{aligned}$

Notation (2 of 3): Transforms

$$e_k(z)$$
 The function $\exp i\left(kz + \overline{k}\overline{z}\right)$

 \mathcal{F} The Fourier transform

$$(\mathcal{F}\psi)(k) = \frac{1}{\pi} \int e_k(z)\psi(z) \, dA(z)$$

$$\mathcal{C} \quad \text{The solid Cauchy transform} \\ \mathcal{C}\left[f\right](z) = \frac{1}{\pi} \int_{\mathbb{C}} \frac{1}{z - \zeta} f(\zeta) \, dA(\zeta)$$

$$\begin{array}{l} \mathcal{C}_k \quad \text{The solid Cauchy transform in the } k \text{ variable} \\ \mathcal{C}_k \ [f] (k) = \frac{1}{\pi} \int_{\mathbb{C}} \frac{1}{k - \zeta} f(\zeta) \ dA(\zeta) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation (3 of 3): Operators

If X is a Banach space, $\mathcal{B}(X)$ denotes the bounded linear operators from X to itself.

 $\mathcal{B}(X)$ is itself a Banach space with norm

$$\|T\|_{\mathcal{B}(X)} = \sup \{\|Tx\|_X : \|x\|_X = 1\}$$

The *compact operators* are the norm-closure of finite-rank operators in $\mathcal{B}(X)$. They are important because (I + T) is Fredholm

For certain subalgebras \mathcal{A} of the compact operators, one can define a determinant det(I + T) for $T \in \mathcal{A}$ with the property that $(I + T)^{-1}$ exists iff det $(I + T) \neq 0$

The Mikhlin-Itskovich Algebra (1 of 2)

The Mikhlin-Itskovich algebra \mathcal{A}_p is an algebra of compact integral operators on $L^p(\mathbb{C})$.

Fix $p \in (1, \infty)$. The operator

$$(Af)(z) = \int a(z,\zeta)f(\zeta) \, dA(\zeta)$$

belongs to \mathcal{A}_p if

- The integral kernel $a(z,\zeta)$ belongs to $L^p(L^q)$ where $p^{-1}+q^{-1}=1$
- The integral kernel $a^*(z,\zeta)=a(\zeta,z)$ belongs to $L^q(L^p)$ for the same (p,q)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Mikhlin-Itskovich Algebra (2 of 2)

The norm on \mathcal{A}_p is

$$\|A\|_{\mathcal{A}_{\mathcal{P}}}=\max\left(\|a\|_{L^{p}(L^{q})}$$
 , $\|a^{*}\|_{L^{p}(L^{q})}
ight)$

For any $A \in \mathcal{A}_p$,

$$\|A\|_{\mathcal{B}(L^p)} \le \|A\|_{\mathcal{A}_p}$$

The finite-rank operators are dense in \mathcal{A}_p and the norm satisfies

$$\left\|AB\right\|_{\mathcal{A}_{p}} \leq \left\|A\right\|_{\mathcal{A}_{p}} \left\|B\right\|_{\mathcal{A}_{p}}.$$

Renormalized Determinants on \mathcal{A}_p

Gohberg, Goldberg, and Krein (1997) defined a renormalized determinant Det(I + A) for $A \in \mathcal{A}_p$ with the following properties:

• If F is a finite-rank operator,

$$\operatorname{Det}(I+F) = \operatorname{det}\left((I+F)e^{-F}\right)$$

• $(I + A)^{-1}$ exists on $\mathcal{B}(L^p)$ if and only if $\text{Det}(I + A) \neq 0$ One should understand the "renormalization" via the identity

$$\log \det(I+B) = \operatorname{tr} \log(I+B)$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \operatorname{tr} (B^n)$$

For $A \in \mathcal{A}_p$, $tr(A^n)$ makes sense for $n \geq 2$.

The Davey-Stewartson II Equation

The DS II equation describes the amplitude envelope u = u(x, y, t) of a monochromatic, weakly nonlinear surface wave:

$$iu_t + 2\left(\partial^2 + \overline{\partial}^2\right)u + (g + \overline{g})u = 0$$
$$\overline{\partial}g + \sigma\partial\left(|u|^2\right) = 0$$

where $\sigma = +1$ (defocussing) or -1 (focussing). The second equation determines g in terms of u at each time t. Another way of writing this equation is

$$iu_t + 2\left(\partial^2 + \overline{\partial}^2\right)u + 2\sigma\Re\left(\overline{\partial}^{-1}\partial|u|^2\right)u = 0$$

The DS II equation is a two-dimensional analogue of the cubic NLS in one dimension and is completely integrable.

We will study dispersive behavior of the defocussing DS II equation ($\sigma=+1)$ and soliton solutions of the focussing DS II equation ($\sigma=-1)$

Key ideas:

- Use "stationary phase" methods and IST to obtain large-time asymptotics of defocussing DS II
- Use renormalized determinants to study soliton solutions of focussing DS II

Lax Representation (Review)

The defocussing DS II admits a Lax representation $\dot{L} = [A, L]$ where

$$L = -\partial_x - iJ\partial_y + Q$$
$$A = B - Q\partial_y + iJ\partial_y^2$$

where

$$J = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad Q = \left(\begin{array}{cc} 0 & u \\ \overline{u} & 0 \end{array}\right)$$

The equation $L\psi = 0$ defines a spectral problem, while the equation $\psi_t = A\psi$ implies a law of evolution for scattering data.

Defocussing Case: Dispersion

In this section we'll use the solution formula

$$u(z,t) = \mathcal{I}\left[\exp\left(it\left(\diamond^2 + (\overline{\diamond})^2\right)\right)\mathcal{R}(u_0)(\diamond)\right](z)$$

to prove that the defocussing DS II equation exhibits dispersive behavior by computing L^{∞} asymptotics to leading order. We make a slighty stronger assumption that

$$\mathcal{R}u_0 \in H^{1,1}(\mathbb{C}) \cap C^0(\mathbb{C})$$

It is sufficient that

 $u_0 \in H^{1,1}(\mathbb{C}) \cap L^1(\mathbb{C})$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

References:

- 1. L.-Y. Sung, J. Nonlinear Sci. 5 (1995), no. 5, 433-452.
- O. M. Kiselev, *Differential Equations* 33 (1997), no. 6, 815–823.
- 3. P. Perry, arXiV:1110.5589 and *J. Spectral Theory*, to appear.

$\overline{\partial}$ Problem with Parameters (1 of 2)

Recall that if u_0 is the Cauchy data $r = \mathcal{R}u_0$, we compute the solution via the formula

$$u(z,t) = \mathcal{I}\left[\exp\left(it\left(\diamond^2 + (\overline{\diamond})^2\right)\right)\mathcal{R}u_0\right](z)$$

Recall that $\mathcal{I}: r \to u$ is defined by the $\overline{\partial}$ -problem

$$\left(\overline{\partial}_{k}\nu_{1}\right)(z,k) = -\frac{i}{2}e_{k}(z)\overline{r(k)}\overline{\nu_{2}(z,k)} \\ \left(\overline{\partial}_{k}\nu_{2}\right)(z,k) = -\frac{i}{2}e_{k}(z)\overline{r(k)}\overline{\nu_{1}(z,k)}$$

and the reconstruction formula

$$u(z) = \frac{1}{\pi} \int e_{-k}(z) r(k) v_1(z,k) \, dA(z)$$

Now replace r(k) by $r(k) \exp(it(k^2 + \overline{k}^2))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\overline{\partial}$ Problem with Parameters (2 of 2)

Hence, to compute

$$u(z, t) = \mathcal{I}\left[\exp\left(it\left(\diamond^2 + (\overline{\diamond})^2\right)\right)\mathcal{R}u_0\right](z)$$

we solve the $\overline{\partial}$ -problem with parameters:

$$\left(\overline{\partial}_{k}\nu_{1}\right)(z,k) = -\frac{i}{2}e^{-itS}\overline{r(k)}\overline{\nu_{2}(z,k)}$$
$$\left(\overline{\partial}_{k}\nu_{2}\right)(z,k) = -\frac{i}{2}e^{-itS}\overline{r(k)}\overline{\nu_{1}(z,k)}$$

$$\lim_{|k| \to \infty} (\nu_1(z, k), \nu_2(z, k)) = (1, 0)$$

where

$$S(z, k, t) = \frac{kz + \overline{k}\overline{z}}{t} + \left(k^2 + \overline{k}^2\right)$$

and recover u from

$$u(z,t) = \frac{1}{\pi} \int e^{itS} r(k) v_1(z,k) \, dA(k)$$

Open Problems

Integral Equation

Define

$$M\psi = \frac{1}{2}\mathcal{C}_k\left[e^{-itS}\overline{r}\overline{\psi}\right]$$

Then

$$\nu_1 = 1 + M\nu_2$$
$$\nu_2 = M\nu_1$$

and

$$u = \frac{1}{\pi} \int e^{itS(z,k,t)} r(k) v_1(z,k) \, dA(k)$$

To obtain large-t asymptotics of u in L^{∞} , we must obtain large-t asymptotics of ν_1 in L^p

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Stationary Phase

S has a single, nondegenerate stationary phase point:

$$S(z, k, t) = \frac{kz + \overline{k}\overline{z}}{t} + \left(k^2 + \overline{k}^2\right),$$
$$S_{\overline{k}}(z, k, t) = 2(k - k_c), \qquad k_c = -\frac{z}{2t},$$

By Bukhgeim's formula, if ψ has support away from k_c ,

$$(M\psi)(z,k,t) = \frac{e^{-itS(z,k,t)}}{2itS_{\overline{k}}(k)}\overline{r(k)}\psi(k)$$
$$-\frac{1}{2\pi it}\int \frac{e^{-itS(\zeta)}}{k-\zeta}\overline{\partial}_{\zeta}\left(S_{\overline{k}}^{-1}(\zeta)\overline{r(k)}f(\zeta)\right) \, dA(\zeta)$$

so $(M\psi)$ decays in t for ψ localized away from k_c .

An " L^{∞} Scattering" Result

We'll show that, up to $o(t^{-1})$ remainders in L^{∞} norm, u(z, t) equals $v(z, t) = \int e^{itS(z,k,t)}r(k) dA(k)$ which solves the linear equation

$$iv_t + \left(\partial^2 + \overline{\partial}^2\right)v = 0$$

 $v(z, 0) = \left(\mathcal{F}^{-1}r\right)(z)$

Localization

Fix z, t and hence $k_c = -z/2t$. Let η be a $C^{\infty}(\mathbb{C})$ function with $\eta(\zeta) = 1$ for $|\zeta| \le 1$ and $\eta(\zeta) = 0$ for $|\zeta| \ge 2$. Define

$$\chi(k) = \eta\left(t^{1/4}(k-k_c)\right).$$

Thus:

- χ localizes near the critical point, and χr has shrinking support as $t \to \infty$
- (1χ) localizes away from the critical point where stationary phase methods may be used

Operator Estimates

Recall

$$M\psi = \frac{1}{2}\mathcal{C}_k\left[e^{-itS}\overline{r}\overline{\psi}\right]$$

Writing

$$M\psi = \underbrace{M\left(\chi\psi
ight)}_{ ext{small support}} + \underbrace{M\left((1-\chi)\psi
ight)}_{ ext{stationary phase}}$$

we can prove:

Lemma Given any $\varepsilon > 0$, there is a $\delta > 0$ so that

$$\left\|M^{2}\psi\right\|_{L^{2+2\delta}}\leq Ct^{arepsilon-1/2}\left\|r
ight\|_{H^{1,1}}^{2}\left\|\psi
ight\|_{L^{2+2\delta}}$$
 .

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Resolvent Estimates, Large-t Expansions (1 of 2)

Recall Given any $\varepsilon > 0$, there is a $\delta > 0$ so that

$$\|M^2\psi\|_{L^{2+2\delta}} \leq Ct^{\varepsilon-1/2} \|r\|_{H^{1,1}}^2 \|\psi\|_{L^{2+2\delta}}.$$

This means that $(I - M^2)$ is invertible for t large, and that one can obtain large-t expansions with controlled remainder by writing

$$(I - M^2)^{-1} = I + \sum_{j=1}^{N} M^{2j} + M^{2N} (I - M^2)^{-1} M^2.$$

To compute $\nu_1 = (I - M^2)^{-1}1$ to order t^{-1} , one need use only finitely many terms in the Neumann expansion.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Large-*t* Asymptotics of u(z, t)

Recall that u(z, t) solves DS II with initial data u_0 , v(z, t) solves the linear equation with initial data $\mathcal{F}^{-1}\mathcal{R}u_0$. Now use the expansion

$$\nu_1 = 1 + \sum_{j=1}^{N} (M^{2j}1) + M^{2N}(I - M^2)^{-1} (M^21)$$

in the reconstruction formula

$$u(z,t) = \frac{1}{\pi} \int e^{itS(z,k,t)} r(k) v_1(z,k,t) \, dA(k)$$

to obtain an expansion for u(z, t) whose lowest-order term is v(z, t)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Resolvent Estimates, Large-t Expansions (2 of 2)

$$u(z,t) - v(z,t) = \frac{1}{\pi} \int e^{itS(z,k,t)} r(k) \left(v_1(z,k,t) - 1 \right) \, dA(k)$$

= $\sum_{j=1}^{N} \frac{1}{\pi} \int e^{itS(z,k,t)} r(k) (M^{2j}1)(z,k,t) \, dA(k)$
+ $\int e^{itS(z,k,t)} r(k) v_{1,N}(z,k,t) \, dA(k)$

where

$$v_{1,N}(z, k, t) = \left[(M^{2N}(I - M^2)^{-1}(M^2 1)) \right] (z, k, t)$$

The remainders are estimated using stationary phase and cutoff functions.

Open Problems

Large-Time Asymptotics: The Bigger Picture

- The example of defocussing DS II shows what a "nonlinear stationary phase" method may look like in the $\overline{\partial}$ -context
- The method (i.e., strong estimates on fundamental integral operators via stationary phase plus resolvent expansions) should apply to other problems with isolated critical points

.

Focussing Case: Soliton Solutions

In this section we'll use Fredholm determinants to analyze the one-soliton solution to focussing DS II given by Arkadiev, Progrebkov, and Polivanov.

References:

- V. A. Arkadiev, A. K. Progrebkov, M. C. Polivanov. *Physica* D. 36 (1989), 189-197.
- R. Brown, M. Music, and P. Perry, In preparation.
- E. V. Doktorov, S. B. Leble. A Dressing Method in Mathematical Physics. *Mathematical Physics Studies*, **28**, Springer, Dordrecht, 2007
- J. Villarroel, M. Ablowitz. *SIAM J. Math. Anal.* **34** (2003), no. 6, 1253-1278.

Open Problems

DS II Spectral Problem Revisited (1 of 3)

We'll formulate the spectral problem and scattering data in a different way:

$$D\psi = rac{1}{2}Q\psi$$

for a 2 \times 2 matrix-valued function ψ .

$$D = \begin{pmatrix} \overline{\partial} & 0 \\ 0 & \overline{\partial} \end{pmatrix}, \qquad Q = \begin{pmatrix} 0 & u \\ -\overline{u} & 0 \end{pmatrix}$$

and factor

$$\psi = M E$$
, $\psi \sim E$ as $|z|
ightarrow \infty$

where

$$E = \left(\begin{array}{cc} e^{ikz} & 0\\ 0 & e^{-i\overline{k}\overline{z}} \end{array}\right)$$

We reformulate the spectral problem in terms of M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

DS II Spectral Problem Revisited (2 of 3)

$$D = \begin{pmatrix} \overline{\partial} & 0 \\ 0 & \overline{\partial} \end{pmatrix}, \qquad Q = \begin{pmatrix} 0 & u \\ -\overline{u} & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

We find

$$DM - \frac{i}{2}k [\sigma_3, M] = \frac{1}{2}QM$$
$$\lim_{|z| \to \infty} M(z, k) = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

As usual, it suffices by symmetry to study the first column $(M_{11}, M_{21}) =: (M_1, M_2).$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

DS II Spectral Problem Revisited (3 of 3)

Write

$$\mathbf{M}(z) = (M_1(z), M_2(z))^T$$

We obtain the mixed $\partial -\overline{\partial}$ system

$$\overline{\partial}_z M_1 = \frac{1}{2} u M_2$$
$$(\partial_z + ik) M_2 = -\frac{1}{2} \overline{u} M_1$$
$$\lim_{|z| \to \infty} \mathbf{M}(z) = (1, 0)^T$$

A point $k \in \mathbb{C}$ is called a *regular point* if this problem has a unique solution, and a *singular point* otherwise.

Integral Equation (1 of 2)

Let

$$G(k)\begin{pmatrix} w_1\\ w_2 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} \mathcal{C}[uw_2]\\ -e_{-k}\overline{\mathcal{C}}[e_k\overline{u}w_1] \end{pmatrix}$$
$$\mathbf{e}_1 = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

and

The spectral problem is

$$\mathbf{M} = \mathbf{e}_1 + G(k)\mathbf{M}$$

If $u \in L^{2-\varepsilon}(\mathbb{C}) \cap L^{2+\varepsilon}(\mathbb{C})$, the operator G(k) is a compact operator from $C^0(\mathbb{C}) \otimes \mathbb{C}^2$ to itself with $||G(k)||_{\mathcal{B}(C^0)} \to 0$ as $|k| \to \infty$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Integral Equation (2 of 2)

The equation

$$\mathbf{M} = \mathbf{e}_1 + G(k)\mathbf{M}$$

has a unique solution $\mathbf{M}(z, k)$ for sufficiently large k with

$$\lim_{|z|\to\infty} z\left(\mathsf{M}(z,k) - \mathbf{e}_1 - \frac{1}{z} \left(\begin{array}{c} s(k) \\ r(k) \end{array}\right)\right) = \mathbf{0}$$

where

$$s(k) = \frac{i}{2\pi} \int u(z) M_2(z, k) \, dA(z)$$

$$r(k) = \frac{i}{2\pi} \int e_k(z) \overline{u(z)} M_1(z, k) \, dA(z)$$

The first is flow-invariant; the second obeys a linear evolution equation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scattering Data

Note that, for $u \in \mathcal{S}(\mathbb{C})$, we have

$$s(k) \sim \sum_{j=0}^{\infty} rac{s_j}{k^{j+1}}$$

where

$$s_0 = -\frac{i}{2\pi} \int_{\mathbb{C}} |u(z)|^2 \, dA(z)$$

Fredholm Determinant (1 of 4)

Suppose $u \in L^{2-\varepsilon}(\mathbb{C}) \cap L^{2+\varepsilon}(\mathbb{C})$ and iterate the integral equation:

$$\mathbf{M}(z,k) = \mathbf{e}_1 + G(k)\mathbf{e}_1 + G(k)(I - G(k))^{-1}(G(k)\mathbf{e}_1)$$

- It suffices to study the resolvent $(I G(k))^{-1}$ as a map from $L^p(\mathbb{C}) \otimes \mathbb{C}^2$ to itself.
- The operator G(k) belongs to the Mikhlin-Itskovich algebra \mathcal{A}_p for any p>2
- (I G(k)) is invertible in $\mathcal{B}(L^p)$ if and only if

$$D(k) := \operatorname{Det}(I - G(k))$$

is nonzero (Brown, Music, Perry 2014).

Fredholm Determinant (2 of 4)

Recall (s(k), r(k)) are scattering data for $\mathbf{M}(z, k)$, and

$$D(k) := \operatorname{Det}(I - G(k))$$

Then, for |k| sufficiently large,

$$\overline{\partial}_k \log D(k) = \frac{i}{2}\overline{s(k)} - c(k)$$

and

$$\lim_{|k|\to\infty} D(k) = 1.$$

Here

$$c(k) = \frac{i}{4\pi} \int \frac{e_{-k}(z)u(w)e_k(z)\overline{u(z)}}{z-w} \, dA(z,w)$$

Fredholm Determinant (3 of 4)

$$\overline{\partial}_k \log D(k) = \frac{i}{2}\overline{s(k)} - c(k)$$

Where the $\overline{\partial}$ equation comes from:

• Determinant differentiation formula

$$\begin{split} \overline{\partial} \log \det \left(I - A(z) \right) &= \overline{\partial} \operatorname{Tr} \log \left(I - A(z) \right) \\ &= \operatorname{Tr} \left[\left(I - A(z) \right)^{-1} \overline{\partial} A(z) \right] \end{split}$$

• $\overline{\partial}_k G(z)$ is a finite-rank operator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fredholm Determinant (4 of 4)

$$\overline{\partial} \log D(k) = \frac{i}{2} \overline{s(k)} - c(k)$$

$$c(k) = \frac{i}{4\pi} \int \frac{e_{-k}(z)u(w)e_{k}(z)\overline{u(z)}}{z - w} dA(z, w)$$

$$\frac{i}{2} \overline{s(k)} - c(k) \sim \mathcal{O}\left(|k|^{-2}\right)$$

Hence, in principle, one can "integrate in from infinity" to find the determinant.

One-Soliton Ansatz

Using formal arguments, Arkadiev, Progrebov, and Polivanov showed that if

$$u(z) = \frac{2c_1e_{k_0}(z)}{|z+z_1|^2 + |c_1|^2}$$

then

$$\mathbf{M}(z,k) = \begin{pmatrix} 1\\0 \end{pmatrix} + \frac{1}{k-k_0}m_{-1}(z)$$

where

$$m_{-1}(z) = \frac{i}{|z+z_1|^2+|c_1|^2} \left(\begin{array}{c} \overline{z}+\overline{z_1} \\ \overline{c_1}e_{-k_0}(z) \end{array} \right).$$

This solution must be correct for large k by uniqueness

One-Soliton Conundrum

Recall

$$\overline{\partial} \log D(k) = \frac{i}{2} \overline{s(k)} - c(k).$$

For large k, one can easily compute from the APP ansatz for u and the APP solution $\mathbf{M}(z, k)$ that

$$s(k) = 2i \frac{1}{k - k_0}, \qquad c(k) = \gamma(k - k_0)$$

where

$$\gamma(\kappa) \sim rac{1}{\overline{\kappa}} + \mathcal{O}\left(|\kappa|^{-2}
ight)$$

and $\gamma(\kappa)$ is regular at $\kappa = 0$. One expects that

$$D(k) \sim \log |k - k_0|^2$$

near $k = k_0$, but is the solution still unique near $k = k_0$?

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

One-Soliton to One Dimension

Recall

$$u(z) = \frac{2c_1e_{k_0}(z)}{|z+z_1|^2 + |c_1|^2}$$

Without loss we can take $z_1 = 0$ (translate) and $c_1 = 1$ (dilate) so

$$u(z) = \frac{e_{k_0}(z)}{|z|^2 + 1}$$

We will show that $\log D(k) = F(|k - k_0|^2)$ for a function F on $(0, \infty)$

- The $\overline{\partial}$ -problem becomes "essentially one dimensional"
- We can literally "integrate in from infinity"

From $\overline{\partial}$ -Problem to ODE

Let
$$F(|k - k_0|^2) = \log D(k)$$
. Then

$$F'(|k-k_0|^2)(k-k_0) = \frac{1}{\overline{k}-\overline{k_0}} - \gamma(k-k_0)$$

or, setting $t = |k - k_0|^2$,

$$F'(t) = 1/t - g(t)$$

where $g(t) = 1/t + O(t^{-2})$ as $t \to \infty$. Of course, since these calculations are based on the APP solution, they only hold a priori for t large.

One-Soliton Bootstrap

We'll show that the APP solution is valid down to $k = k_0$ by showing that $\log D(k)$ is finite for all $k \neq k_0$. Recall $t = |k - k_0|^2$ and $F(|k - k_0|^2) = \log D(k)$.

Let

$$R = \inf\{t \in (0,\infty) : F(t) \text{ is finite}\}\$$

Suppose that $R \neq 0$. The equation

$$F'(t) = 1/t - g(t)$$

holds on (R, ∞) so

$$\int_{R+\varepsilon}^{\infty} \left(\frac{1}{t} - g(t)\right) dt = -F(R+\varepsilon)$$

which shows that F has a finite limit as $t \downarrow R$, a contradiction.

The APP Solution

Thus, we have:

Theorem Let *u* be the APP solition solution

$$u(z) = \frac{2c_1e_{k_0}(z)}{|z+z_1|^2 + |c_1|^2}.$$

Then $k = k_0$ is the unique exceptional point and there is a unique solution $\mathbf{M}(z, k)$ given by

$$\mathbf{M}(z,k) = \begin{pmatrix} 1\\0 \end{pmatrix} + \frac{1}{k-k_0}m_{-1}(z)$$

where

$$m_{-1}(z) = \frac{i}{|z+z_1|^2+|c_1|^2} \left(\begin{array}{c} \overline{z}+\overline{z_1} \\ \overline{c_1}e_{-k_0}(z) \end{array} \right).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Determinants: The Larger Picture

Fredholm determinants are not a new idea (see for example Kazeykina's thesis!) but there is much that may be done:

- Brown, Music, and Perry used determinants to show that, for the two-dimensional scattering problem associated to the Novikov-Veselov equation, the exceptional set of a compactly supported potential can consist at most of isolated points and smooth curves with finitely many intersections
- The GGK papers give explicit formulas for $(I T)^{-1}$ in terms of the renormalized determinant that can be used to study singularities of the scattering solutions and scattering transform
- The determinant depends smoothly on the potential and so may be useful in proving "generic" properties of exceptional sets (e.g. their generic absence!)

Some Open Problems

- 1. Prove an L^2 scattering result for the defocussing DS II equation
- 2. Develop "nonlinear stationary phase" for other systems such as the Novikov-Veselov equation and the DS I equation
- 3. Generalize the one-solition bootstrap to finitely many solitons
- 4. Identify the Villarroel-Ablowitz index with the multiplicity of zeros of the determinant
- 5. Analyze (in)stability of soliton solutions using the determinant
- 6. Prove (or disprove) that the exceptional set of (some class of potentials) consists at most of finitely many points.
- 7. Prove (or disprove) that the generic $C_0^{\infty}(\mathbb{C})$ potential u has no exceptional points.