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Review
Solution of defocusing nonlinear Schrödinger by the inverse-scattering transform

We are interested in the initial-value problem

iεψεt +
ε2

2
ψεxx − |ψε|2ψε = 0, ψε(x, 0) = ψε0(x) :=

√
ρ0(x)eiS(x)/ε,

where
S(x) :=

∫ x

0
u0(y) dy.

We assume that ρ0 and u′0 are Schwartz-class functions.



Review
The formal semiclassical limit

Recall that the initial-value problem implies for the real fields

ρε := |ψε|2 and uε := =
{
εψεx
ψε

}
the system

∂ρε

∂t
+

∂

∂x
(ρεuε) = 0 and

∂uε

∂t
+

∂

∂x

(
1
2

uε2 + ρε
)

=
1
2
ε2∂F[ρε]

∂x

with initial conditions ρε(x, 0) = ρ0(x) and uε(x, 0) = u0(x), where

F[ρ] :=
1

2ρ
∂2ρ

∂x2 −
(

1
2ρ
∂ρ

∂x

)2

.

Neglecting ε2Fx leads to an ε-independent initial-value problem for the
nonlinear hyperbolic dispersionless defocusing NLS system.

This cannot be a global model of the semiclassical dynamics, due to
shock formation.



Review
Direct Scattering Transform: Rε0 = S (ψε0)

We need to calculate the Jost solution w of the linear equation

ε
dw
dx

=

[
−iλ

√
ρ0(x)eiS(x)/ε√

ρ0(x)e−iS(x)/ε iλ

]
w,

that is, the solution for λ ∈ R that is determined (assuming sufficiently
rapid decay of ρ0 for large |x|) by the conditions

w(x) =

[
e−iλx/ε

0

]
+ Rε0(λ)

[
0

eiλx/ε

]
+ o(1), x→ +∞

and

w(x) = Tε0(λ)

[
e−iλx/ε

0

]
+ o(1), x→ −∞,

for some coefficients Rε0(λ) (the reflection coefficient) and Tε0(λ) (the
transmission coefficient).



Review
Semiclassical approximation of S

Under suitable additional conditions on ρ0 and u0, the reflection
coefficient Rε0(λ) can be approximated accurately in the limit ε→ 0 by

R̃ε0(λ) := χ[λ−,λ+](λ)
√

1− e−2τ(λ)/εe−2iΦ(λ)/ε

where λ− := infx∈R α(x) and λ+ := supx∈R β(x) with

α(x) := −1
2 u0(x)−

√
ρ0(x) and β(x) := −1

2 u0(x) +
√
ρ0(x)

and where

τ(λ) :=

∫ x+(λ)

x−(λ)

√
ρ0(y)− (λ+ 1

2 u0(y))2 dy

Φ(λ) := 1
2 S(x+(λ)) + λx+(λ)

−
∫ +∞

x+(λ)

[
σ
√

(λ+ 1
2 u0(y))2 − ρ0(y)− (λ+ 1

2 u0(y))

]
dy

σ := sgn(λ+ 1
2 u0(+∞)).



Review
Inverse Scattering Transform: ψε = S −1(e2iλ2t/εRε0)

Solve (for each fixed x and t) the following Riemann-Hilbert problem:
seek M : C \ R→ SL(2,C) such that:

Analyticity: M is analytic in each half-plane, and takes boundary
values M± : R→ SL(2,C) on the real line from C±.
Jump Condition: The boundary values are related by

M+(λ) = M−(λ)

[
1− |Rε0(λ)|2 −e−2i(λx+λ2t)/εRε0(λ)∗

e2i(λx+λ2t)/εRε0(λ) 1

]
, λ ∈ R.

Normalization: As λ→∞, M(λ)→ I.
The solution of the initial-value problem is given by

ψε(x, t) = 2i lim
λ→∞

λM12(λ).



Modification of Initial Data

We are going to formulate the Riemann-Hilbert problem with R̃ε0(λ) in
place of Rε0(λ). This requires some comment because it is not obvious
that R̃ε0(λ) is even in the image of S .

The key point is that if Rε0(λ) is any function for which the
Riemann-Hilbert problem can be solved, then the extracted potential
ψε := 2i limλ→∞ λM12(λ) is a solution of the defocusing nonlinear
Schrödinger equation. Indeed, the matrix W(λ) := M(λ)ei(λx+λ2t)σ3/ε

satisfies jump conditions that are independent of x and t, and therefore

U := ε
∂W
∂x

W−1 and V := ε
∂W
∂t

W−1

are entire functions of λ. In fact, one can check that U (V) is a linear
(quadratic) function. These are precisely the coefficient matrices in the
Lax pair (cf. Lecture 1). The existence of W as a simultaneous
fundamental solution matrix guarantees the compatibility, which
implies that ψε solves the desired nonlinear PDE.



Modification of Initial Data

We will show directly that after replacing Rε0(λ) by its approximation
R̃ε0(λ):

The Riemann-Hilbert problem can indeed be solved as long as ε is
sufficiently small.
When t = 0, the extracted potential ψε is close in the limit ε→ 0 to
the actual initial data.

Of course ψε is also an exact solution of the defocusing nonlinear
Schrödinger equation.



Solution of Riemann-Hilbert Problems
Associated singular integral equations

Let Σ be an oriented contour (perhaps with self-intersection points),
and let V : Σ→ SL(2,C) be a given jump matrix decaying to I as
λ→∞ along any unbounded arcs of Σ. A general Riemann-Hilbert
problem is the following: find M : C \ Σ→ SL(2,C) such that:

Analyticity: M is analytic in its domain of definition, and takes
boundary values M± : Σ→ SL(2,C) on Σ from the left (+) and
right (−).
Jump Condition: The boundary values are related by
M+(λ) = M−(λ)V(λ) for λ ∈ Σ.
Normalization: As λ→∞, M(λ)→ I.

This problem can be studied by converting it into a linear system of
singular integral equations.



Solution of Riemann-Hilbert Problems
Associated singular integral equations

Subtract M−(λ) from both sides of the jump condition:

M+(λ)−M−(λ) = M−(λ)(V(λ)− I), λ ∈ Σ.

Taking into account the analyticity of M in C \ I and the asymptotic
value of I as λ→∞ it is necessary that M(λ) is given by the Cauchy
integral (Plemelj formula):

M(λ) = I +
1

2πi

∫
Σ

M−(µ)(V(µ)− I)
µ− λ

dµ, λ ∈ C \ Σ.

Letting λ tend to Σ from the right we obtain a closed equation for the
boundary value M−(λ), λ ∈ Σ:

X(λ)− 1
2πi

∫
Σ

X(µ)(V(µ)− I)
µ− λ−

dµ =
1

2πi

∫
Σ

V(µ)− I
µ− λ−

dµ, λ ∈ Σ,

where X(λ) := M−(λ)− I.



Solution of Riemann-Hilbert Problems
Associated singular integral equations

If the jump matrix V depends on parameters (e.g., x, t, ε), one can
consider the asymptotic behavior of the Riemann-Hilbert problem with
respect to one or more parameters. While one could attempt to
analyze the singular equation, this would generally be a difficult
(perhaps impossible) task, and we will proceed differently.

The singular integral equation is perhaps the most useful in the small
norm setting. This means that V− I is small in both the L2(Σ) and
L∞(Σ) sense. This is a consequence of the fact that for a general class
of contours Σ, the operator

F 7→ 1
2πi

∫
Σ

F(µ) dµ
µ− λ−

is bounded on L2(Σ), with a norm that only depends on geometrical
details of Σ. See McIntosh, Coifman, Meyer for Lipschitz arcs, and
Beals and Coifman for self-intersection points.



Solution of Riemann-Hilbert Problems
Associated singular integral equations

For problems of small norm type, the following hold true:
The singular integral equation can be solved in L2(Σ) by iteration
(contraction mapping, or Neumann series). This guarantees
existence and uniqueness of the solution.
It also allows the solution to be constructed (approximated with
arbitrary accuracy and estimated). The L2(Σ) norm of X is
proportional to that of V− I.
Under suitable other technical assumptions, M(λ) has an
asymptotic expansion as λ→∞:

M(λ) = I +

N∑
n=1

λ−nMn + O(λ−(N+1)), λ→∞

and the moments Mn are bounded in terms of norms of V− I.



The Riemann-Hilbert Problem for Semiclassical
Defocusing NLS

Seek M : C \ [λ−, λ+]→ SL(2,C) with the following properties:
Analyticity: M is analytic in its domain of definition and takes
boundary values M±(λ) on (λ−, λ+) from C±.
Jump Condition: M+(λ) = M−(λ)V(λ) for λ− < λ < λ+, where

V(λ) =

[
e−2τ(λ)/ε −e−2iθ(λ;x,t)/εHε(λ)

e2iθ(λ;x,t)/εHε(λ) 1

]
,

θ(λ; x, t) := λx + λ2t − Φ(λ), and Hε(λ) :=
√

1− e−2τ(λ)/ε.
Normalization: As λ→∞, M(λ)→ I.

This is not a small-norm problem in the semiclassical limit ε→ 0.



Outline of Method

We will apply the steepest descent method developed for
Riemann-Hilbert problems by Deift and Zhou (for the first application to
semiclassical asymptotics see Deift, Venakides, and Zhou, 1997). The
general steps in the method are:

1 Control of oscillations. An analogue of the WKB exponent f is
introduced, a scalar-valued analytic function g : C \ [λ−, λ+]→ C
with g(λ)→ 0 as λ→∞. The substitution M(λ) := N(λ)eig(λ)σ3/ε

implies an equivalent Riemann-Hilbert problem for N(λ) whose
jump matrix involves the boundary values taken on [λ−, λ+] by g.
The function g is selected to control the oscillations in the
off-diagonal elements of the jump matrix.

2 Steepest descent. Based on the control afforded by introduction
of g, monotone phases are deformed into the complex plane with
the help of two types of matrix factorizations. This step amounts to
a substitution N(λ) := O(λ)L(λ), where L(λ) is an explicit,
piecewise-analytic matrix function.



Outline of Method
3 Parametrix construction. The jump matrix for O has obvious

asymptotics as ε→ 0, suggesting a certain explicit approximation
for O, denoted Ȯ(λ) and called a parametrix. The parametrix is
defined as an outer parametrix away from exceptional points in the
interval [λ−, λ+]. Near the exceptional points one installs certain
inner parametrices.

4 Error analysis by small norm theory. We compare the unknown
matrix O(λ) with its explicit parametrix Ȯ(λ) by considering the
error matrix E(λ) := O(λ)Ȯ(λ)−1. While unknown, one uses
properties of the explicit parametrix to show that E(λ) satisfies the
conditions of a Riemann-Hilbert problem of small-norm type in the
semiclassical limit ε→ 0. This implies that E− I is small as ε→ 0.

5 Extraction of the solution. By unraveling the steps:

M(λ) = N(λ)eig(λ)σ3/ε = O(λ)L(λ)eig(λ)σ3/ε = E(λ)Ȯ(λ)L(λ)eig(λ)σ3/ε

where only the error term is not explicit. Then extract ψε(x, t) by

ψε(x, t) = 2i lim
λ→∞

λM12(λ).



We’re on a boat. . . I’m your captain. . . join me now.
—Tom Waits, Big Time



Step 1: Control of Oscillations
Choice of g-function

Making the substitution M(λ) = N(λ)eig(λ)σ3/ε, and using the facts that
g : C \ [λ−, λ+]→ C is analytic and g(∞) = 0, we can easily see that
N : C \ [λ−, λ+]→ SL(2,C) satisfies the conditions of this
Riemann-Hilbert problem:

Analyticity: N is analytic in C \ [λ−, λ+], taking boundary values
N±(λ) on [λ−, λ+] from C±.
Jump Condition: The boundary values are related by
N+(λ) = N−(λ)V(N)(λ) for λ− < λ < λ+, where

V(N)(λ) :=

[
e2(∆(λ)−τ(λ))/ε −e−2iφ(λ)/εHε(λ)

e2iφ(λ)/εHε(λ) e−2∆(λ)/ε

]
,

2∆(λ) := −i(g+(λ)− g−(λ)), and 2φ(λ) := 2θ(λ)− g+(λ)− g−(λ).
Normalization: As λ→∞, N(λ)→ I.



Step 1: Control of Oscillations
Choice of g-function

We suppose that g(λ) = g(λ∗)∗ can be found so that (λ−, λ+) can be
partitioned into three types of subintervals:

Voids: These are characterized by the conditions ∆(λ) ≡ 0 and
φ′(λ) > 0.
Bands: These are characterized by the conditions
0 < ∆(λ) < τ(λ) and φ′(λ) ≡ 0.
Saturated regions: These are characterized by the conditions
∆(λ) ≡ τ(λ) and φ′(λ) < 0.

We sometimes collectively refer to voids and saturated regions as
gaps. We always assume that gaps are separated by bands, and that
the left and right-most subintervals of (λ−, λ+) are gaps.

We now examine the consequences of each type of interval for the
jump matrix V(N)(λ).



Step 1: Control of Oscillations
Voids

Under the condition that ∆(λ) ≡ 0, the jump matrix V(N)(λ) has an
“upper-lower” factorization:

V(N)(λ) =

[
1 −e−2iφ(λ)/εHε(λ)
0 1

] [
1 0

e2iφ(λ)/εHε(λ) 1

]
.

Let us assume that φ(λ) and τ(λ) are analytic (this will be the case if
the initial data functions u0 and ρ0 are analytic). Then the condition
φ′(λ) > 0 makes φ(λ) a real analytic function that is strictly increasing
in the void interval. By the Cauchy-Riemann equations, it follows that
the imaginary part of φ(λ) is positive (negative) in the upper (lower)
half-plane.

This implies that the first (second) matrix factor has an analytic
continuation into the lower (upper) half-plane that is exponentially
close to the identity matrix in the limit ε→ 0.



Step 1: Control of Oscillations
Bands

The strict inequalities 0 < ∆(λ) < τ(λ) imply that the diagonal
elements of V(N)(λ), namely

e2(∆(λ)−τ(λ))/ε and e−2∆(λ)/ε

are both exponentially small in the semiclassical limit ε→ 0. The
condition φ′(λ) ≡ 0 together with the inequality τ(λ) > 0 that holds for
all λ ∈ (λ−, λ+) then implies that V(N)(λ) is exponentially close in the
semiclassical limit to a constant off-diagonal matrix:

V(N)(λ) =

[
0 −e−2iφ/ε

e2iφ/ε 0

]
+ exponentially small terms.

The real constant φ can be different for different bands, and it generally
can depend on x and t (but not ε).



Step 1: Control of Oscillations
Saturated Regions

Under the condition that ∆(λ) ≡ τ(λ), the jump matrix V(N)(λ) has a
“lower-upper” factorization:

V(N)(λ) =

[
1 0

e2iφ(λ)/εHε(λ) 1

] [
1 −e−2iφ(λ)/εHε(λ)
0 1

]
.

The condition φ′(λ) < 0 makes φ(λ) a real analytic function that is
strictly decreasing in the void interval. By the Cauchy-Riemann
equations, it follows that the imaginary part of φ(λ) is negative
(positive) in the upper (lower) half-plane.

This again implies that the first (second) matrix factor has an analytic
continuation into the lower (upper) half-plane that is exponentially
close to the identity matrix in the limit ε→ 0.



Step 1: Control of Oscillations
Formula for g

Let us construct g by temporarily setting aside the inequalities.
Suppose that there are N + 1 bands in (λ−, λ+) that we will denote by
(aj, bj) with a0 < b0 < a1 < b1 < · · · < aN < bN . The complementary
intervals are either voids or saturated regions.

Recall that the boundary values of g are subject to the following
conditions:

g+(λ)− g−(λ) = 0 which implies g′+(λ)− g′−(λ) = 0 for λ in voids
and outside of [λ−, λ+].
g′+(λ) + g′−(λ) = 2θ′(λ) for λ in bands.
g+(λ)− g−(λ) = 2iτ(λ) which implies g′+(λ)− g′−(λ) = 2iτ ′(λ) for
λ in saturated regions.

We therefore know g′+ − g′− everywhere along R with the exception of
the band intervals, where we know instead g′+ + g′−.



Step 1: Control of Oscillations
Formula for g

Consider the function r(λ) defined as follows:

r(λ)2 =

N∏
n=0

(λ− an)(λ− bn)

r(λ) is analytic for λ ∈ C \
N⋃

n=0

[an, bn].

r(λ) = λN+1 + O(λN) as λ→∞.
The boundary values of r on any band satisfy r+(λ) + r−(λ) = 0.
Consider instead of g′(λ) the function k(λ) := g′(λ)/r(λ). This function
is analytic where g′ is and satisfies

k+(λ)− k−(λ) =


0, λ in voids or outside of [λ−, λ+]
2θ′(λ)

r+(λ)
, λ in bands

2iτ ′(λ)

r(λ)
, λ in saturated regions.



Step 1: Control of Oscillations
Formula for g

Up to an entire function (which must be zero for consistency with
g′(λ) = O(λ−2) as λ→∞), k must be given by the Plemelj formula:

k(λ) =
1
πi

∫
bands

θ′(µ) dµ
r+(µ)(µ− λ)

+
1
π

∫
saturated regions

τ ′(µ) dµ
r(µ)(µ− λ)

, so,

g′(λ) =
r(λ)

πi

∫
bands

θ′(µ) dµ
r+(µ)(µ− λ)

+
r(λ)

π

∫
saturated regions

τ ′(µ) dµ
r(µ)(µ− λ)

.

The additional condition g′(λ) = O(λ−2) as λ→∞ is equivalent to
k(λ) = O(λ−(N+3)). But since (µ− λ)−1 ∼ −λ−1 − µλ−2 − µ2λ−3 + · · · ,

k(λ) has the Laurent series k(λ) = k1λ
−1+k2λ

−2+k3λ
−3+· · · where

kn := − 1
πi

∫
bands

θ′(µ)µn−1 dµ
r+(µ)

− 1
π

∫
saturated regions

τ ′(µ)µn−1 dµ
r(µ)

.

We therefore require that kn = 0 for n = 1, . . . ,N + 2.



Step 1: Control of Oscillations
Formula for g

With the conditions k1 = · · · = kN+2 = 0, we can obtain g(λ) from g′(λ)
by contour integration:

g(λ) =

∫ λ

∞
g′(µ) dµ because g′ is integrable at∞.

Note, however, that while we have arranged that g′+ − g′− = 0 in voids
and g′+ − g′− = 2iτ ′ in saturated regions, we need to get integration
constants correct to guarantee g+ − g− = 0 in voids and g+ − g− = 2iτ
in saturated regions.

Since τ(λ±) = 0, one can check that the integration constants are
automatically correct in the exterior gaps (λ−, a0) and (bN , λ+). There
remains one condition to impose for each of the N interior gaps.



Step 1: Control of Oscillations
Formula for g

One can check that:
If (bn, an+1) is a void, then g+ − g− = 0 in this interval is equivalent
to the contour integral condition∮

An+1

g′(λ) dλ = 0.

If (bn, an+1) is a saturated region, then g+ − g− = 2iτ in this
interval is equivalent to the contour integral condition∮

An+1

[T ′(λ)− g′(λ)] dλ = 0, where T(λ) :=
1
π

∫ λ+

λ−

τ(µ) dµ
µ− λ

.



Step 1: Control of Oscillations
Formula for g

In total, we have assembled 2N + 2 conditions on 2N + 2 unknowns
a0, b0, . . . , aN , bN . If these equations have a unique solution, then
associated with the symbol sequence (s0, s1, . . . , sN+1), sn = V or
sn = S, indicating the types of the gaps in left-to-right order, we have
determined g(λ).

Of course this analysis has ignored the inequalities that the boundary
values of g are supposed to satisfy. These inequalities should select:

The genus N.
The symbol sequence (s0, . . . , sN+1).

The procedure in practice is therefore to determine N and
(s0, . . . , sN+1) so that the inequalities are true. The independent
variables x and t are parameters in this procedure. In particular, the
genus N will depend on (x, t).



Step 2: Steepest Descent
Opening lenses

Let us suppose that we have found a g-function. We now make a
substitution to exploit the matrix factorizations designed for use in the
gaps. Let ΩV

± (ΩS
±) denote the union of thin lens-shaped domains in C±

that abut voids (saturated regions). Define the piecewise analytic
matrix function L by

L(λ) :=



[
1 0

e2iφ(λ)/εHε(λ) 1

]
, λ ∈ ΩV

+,[
1 0

−e2iφ(λ)/εHε(λ) 1

]
, λ ∈ ΩS

−,[
1 e−2iφ(λ)/εHε(λ)

0 1

]
, λ ∈ ΩV

−[
1 −e−2iφ(λ)/εHε(λ)

0 1

]
, λ ∈ ΩS

+

I, otherwise.



Step 2: Steepest Descent
Opening lenses

Make the substitution N(λ) = O(λ)L(λ). Then O(λ) satisfies:
Analyticity: O is analytic in C \ Σ(O), taking boundary values O+

(O−) on each oriented arc of Σ(O) from the left (right).
Jump Condition: The boundary values are related by
O+(λ) = O−(λ)V(O) for λ ∈ Σ(O) (see figure).
Normalization: As λ→∞, O(λ)→ I.



Step 3: Parametrix Construction
Outer parametrix

Letting ε→ 0 pointwise in λ along Σ(O), the jump matrix V(O)(λ)
converges to I, except along the band (an, bn), where

V(O)(λ) =

[
0 −e−2iφn/ε

e2iφn/ε 0

]
+ exponentially small terms

where φn are well-defined real-valued functions of (x, t) that are
independent of λ and ε. This suggests a formal approximation for O(λ)
that solves the following problem: seek Ȯ(out) : C \ bands→ SL(2,C)
with the properties

Analyticity: Ȯ(out) is analytic where defined and takes boundary
values Ȯ(out)

± (λ) from C± on each band (an, bn).
Jump Condition: The boundary values satisfy (n = 0, . . . ,N)

Ȯ(out)
+ (λ) = Ȯ(out)

− (λ)

[
0 −e−2iφn/ε

e2iφn/ε 0

]
, an < λ < bn.

Normalization: As λ→∞, Ȯ(out)(λ)→ I.



Step 3: Parametrix Construction
Outer parametrix

Since the jump matrix is discontinuous at the band endpoints, we need
to specify a singularity at each; we will suppose that for all n,

Ȯ(out)(λ) = O((λ− an)−1/4(λ− bn)−1/4), λ→ an, bn.

With this condition, there is a unique solution for Ȯ(out)(λ) that we call
the outer parametrix. In general, it is constructed in terms of Riemann
theta functions of genus N, but for N = 0 (one band) the solution is
elementary:

Ȯ(out)(λ) = e−iφ0σ3/εAγ(λ)σ3A−1eiφ0σ3/ε, where A :=

[
i −i
1 1

]
and where γ(λ) is the function analytic for λ ∈ C \ [a0, b0] that satisfies

γ(λ)4 =
λ− b0

λ− a0
and lim

λ→∞
γ(λ) = 1.



Step 3: Parametrix Construction
Inner parametrices

The approximation of the jump matrix V(O)(λ) leading to the outer
parametrix fails to be uniformly valid near the band endpoints.

Elsewhere the accuracy is uniformly of order O(1/ log(ε−1)), dominated
by behavior near λ±. Away from these points we have exponential
accuracy.

Therefore, it it reasonable that another approximation of O(λ) will need
to be constructed for each small disk centered at a band endpoint. The
recipe for this construction is the following:

1 Replace the three jump matrices locally by exponentially accurate
approximations by replacing Hε(λ) with 1 and dropping the
uniformly exponentially small diagonal entry of V(O)(λ) on the
band.



Step 3: Parametrix Construction
Inner parametrices

2 Find a matrix that locally solves the resulting jump conditions
exactly.

Use conformal mapping λ→ ζ to simplify the exponents (goal:
make them all proportional to ζ3/2).
Solve the simplified jump conditions with the help of Airy functions.

3 Multiply the solution on the left by a matrix holomorphic near the
band endpoint (which cannot alter the jump conditions) chosen to
match well onto the outer parametrix on the disk boundary.

The result of this procedure is a matrix function Ȯ(in,D)(λ) called an
inner parametrix defined in an ε-independent disk D containing the
band endpoint of interest with the following properties:

Ȯ(in,D)(λ) = O(ε−1/6) uniformly for λ ∈ D.

Ȯ(in,D)
+ (λ) = Ȯ(in,D)

− (λ)(I + exponentially small)V(O)(λ) for
λ ∈ Σ(O) ∩ D.
Ȯ(in,D)(λ)Ȯ(out)(λ)−1 = I + O(ε) uniformly for λ ∈ ∂D.



Step 3: Parametrix Construction
Global parametrix

Each band endpoint gets its own disk Da0 , . . . ,DbN , and its own inner
parametrix. Combining these definitions with the outer parametrix
gives rise to an explicit, ad-hoc approximation of O(λ) called the global
parametrix denoted Ȯ(λ) and defined as follows:

Ȯ(λ) :=

{
Ȯ(in,Dp)(λ), λ ∈ Dp, p = a0, . . . , bN ,

Ȯ(out)(λ), otherwise.



Step 4: Error Analysis by Small Norm Theory

Let the error of the approximation be defined as the matrix function

E(λ) := O(λ)Ȯ(λ)−1

wherever both factors make sense. This makes E(λ) analytic on the
complement of an arcwise oriented contour Σ(E) (pictured).

While O is only specified as the solution of a Riemann-Hilbert problem,
the global parametrix Ȯ(λ) is known. Therefore we may regard the
mapping O→ E as a substitution resulting in an equivalent
Riemann-Hilbert problem for E.



Step 4: Error Analysis by Small Norm Theory
Since both O(λ)→ I (by normalization condition) and Ȯ(λ)→ I (by
construction) as λ→∞, we also must have E(λ)→ I in this limit.
By direct calculations, one checks that as a consequence of the
uniform boundedness of the outer parametrix outside all disks,

E+(λ) = E−(λ)(I + O(1/ log(ε−1))) uniformly for λ ∈ Σ(E).

This means that E(λ) satisfies the conditions of a Riemann-Hilbert
problem of small norm type, with estimates of V(E)(λ)− I in all required
spaces being O(1/ log(ε−1)). Small-norm theory therefore implies that:

E(λ) exists for sufficiently small ε and is unique, and hence (by
unraveling the explicit substitutions) the same is true of M(λ).
E(λ) has a Laurent series (convergent, because Σ(E) is bounded)

E(λ) = I +

∞∑
n=1

Enλ
−n with En = O(1/ log(ε−1)), ∀n.



Step 5: Extraction of the Solution
Recall that a solution of the defocusing nonlinear Schrödinger equation
ψε(x, t) is obtained from the (well-defined for sufficiently small ε)
solution M(λ) of the original Riemann-Hilbert problem of inverse
scattering with modified reflection coefficient via

ψε(x, t) = 2i lim
λ→∞

λM12(λ).

Now we express this in terms of known quantities and the error matrix
E. Since L(λ) = I and Ȯ(λ) = Ȯ(out)(λ) both hold for large enough |λ|,

ψε(x, t) = 2i lim
λ→∞

[
E(λ)Ȯ(out)(λ)eig(λ)σ3/ε

]
12

= 2iE1,12 + 2iȮ(out)
1,12

= 2iȮ(out)
1,12 + O(1/ log(ε−1)).

When N = 0 (one band, (a0, b0)), this reads simply

ψε(x, t) =
1
2

(b0 − a0)e−2iφ0/ε + O(1/ log(ε−1)),
∂φ0

∂x
=

1
2

(a0 + b0).



The g-Function When t = 0

We want to give some further details of this procedure in some simple
cases. We first claim that the g-function can be determined explicitly
when t = 0, and that N = 0 (one band) suffices in this case.

Recall that for N = 0 there are just two conditions to be satisfied by the
endpoints a0, b0: k1 = k2 = 0. We have the following result

Proposition
Set t = 0. The equations k1 = k2 = 0 are simultaneously satisfied by

a0 = α(x) and b0 = β(x)

with symbol sequences
(V,V) where α′(x) > 0 and β′(x) < 0

(V,S) where α′(x) > 0 and β′(x) > 0

(S,V) where α′(x) < 0 and β′(x) < 0

(S,S) where α′(x) < 0 and β′(x) > 0.



The g-Function When t = 0

One can further confirm that the necessary inequalities are also
satisfied by the specified configuration when t = 0. This information is
summarized in this figure:



Perturbation Theory for Small Time
The implicit function theorem can be used to continue the solution to
k1 = k2 = 0 for small t independent of ε. The necessary inequalities
also persist as they hold strictly when t = 0. Therefore we have a
genus N = 0 configuration of a single band for all x ∈ R if t is
sufficiently small.

Implicit differentiation of the conditions k1 = 0 and k2 = 0 with respect
to x and t shows that the following equations hold true:

∂a0

∂t
−
[

3
2

a0 +
1
2

b0

]
∂a0

∂x
= 0 and

∂b0

∂t
−
[

3
2

b0 +
1
2

a0

]
∂b0

∂x
= 0.

Note that setting a0 = − 1
2 u−√ρ and b0 = −1

2 u +
√
ρ this system

becomes the dispersionless defocusing NLS system

∂ρ

∂t
+

∂

∂x
(ρu) = 0 and

∂u
∂t

+
∂

∂x

(
1
2

u2 + ρ

)
= 0.

Also, ψε(x, t) =
√
ρ(x, t)ei

∫ x u(y,t) dy/ε + O(1/ log(ε−1)).



Bifurcation Theory
Jumping genus, Batman!

For larger t, the g-function theory tiles the (x, t)-plane with regions
corresponding to different genera N. The earliest point of transition is
the shock time for the dispersionless NLS system.

ρ0(x) = 1
10 + 1

2 e−256x2

u0(x) = 1
ε = 0.0122
Periodic boundary conditions

Genus bifurcations in the g-function are the integrable nonlinear
analogues of stationary phase point bifurcations in the linear theory.


