### Introduction to Semiclassical Asymptotic Analysis: Lecture 2

Peter D. Miller

Department of Mathematics University of Michigan

Scattering and Inverse Scattering in Multidimensions May 15–23, 2014 University of Kentucky

<ロト <回ト < 国ト < 国ト = 国

### **Review**

Solution of defocusing nonlinear Schrödinger by the inverse-scattering transform

We are interested in the initial-value problem

$$i\epsilon\psi_t^\epsilon + rac{\epsilon^2}{2}\psi_{xx}^\epsilon - |\psi^\epsilon|^2\psi^\epsilon = 0, \ \psi^\epsilon(x,0) = \psi_0^\epsilon(x) := \sqrt{
ho_0(x)}e^{iS(x)/\epsilon},$$

where

$$S(x) := \int_0^x u_0(y) \, dy.$$

We assume that  $\rho_0$  and  $u'_0$  are Schwartz-class functions.



### Review The formal semiclassical limit

Recall that the initial-value problem implies for the real fields

$$ho^\epsilon:=|\psi^\epsilon|^2$$
 and  $u^\epsilon:=\Im\left\{rac{\epsilon\psi^\epsilon_x}{\psi^\epsilon}
ight\}$  the system

$$\frac{\partial \rho^{\epsilon}}{\partial t} + \frac{\partial}{\partial x}(\rho^{\epsilon}u^{\epsilon}) = 0 \quad \text{and} \quad \frac{\partial u^{\epsilon}}{\partial t} + \frac{\partial}{\partial x}\left(\frac{1}{2}u^{\epsilon^2} + \rho^{\epsilon}\right) = \frac{1}{2}\epsilon^2 \frac{\partial F[\rho^{\epsilon}]}{\partial x}$$

with initial conditions  $\rho^{\epsilon}(x,0) = \rho_0(x)$  and  $u^{\epsilon}(x,0) = u_0(x)$ , where

$$F[\rho] := \frac{1}{2\rho} \frac{\partial^2 \rho}{\partial x^2} - \left(\frac{1}{2\rho} \frac{\partial \rho}{\partial x}\right)^2.$$

Neglecting  $\epsilon^2 F_x$  leads to an  $\epsilon$ -independent initial-value problem for the nonlinear hyperbolic *dispersionless defocusing NLS system*.

This cannot be a global model of the semiclassical dynamics, due to shock formation.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

We need to calculate the Jost solution w of the linear equation

$$\boldsymbol{\epsilon} \frac{d\mathbf{w}}{dx} = \begin{bmatrix} -i\lambda & \sqrt{\rho_0(x)}e^{iS(x)/\boldsymbol{\epsilon}} \\ \sqrt{\rho_0(x)}e^{-iS(x)/\boldsymbol{\epsilon}} & i\lambda \end{bmatrix} \mathbf{w},$$

that is, the solution for  $\lambda \in \mathbb{R}$  that is determined (assuming sufficiently rapid decay of  $\rho_0$  for large |x|) by the conditions

$$\mathbf{w}(x) = \begin{bmatrix} e^{-i\lambda x/\epsilon} \\ 0 \end{bmatrix} + R_0^{\epsilon}(\lambda) \begin{bmatrix} 0 \\ e^{i\lambda x/\epsilon} \end{bmatrix} + o(1), \quad x \to +\infty$$

and

$$\mathbf{w}(x) = T_0^{\epsilon}(\lambda) \begin{bmatrix} e^{-i\lambda x/\epsilon} \\ 0 \end{bmatrix} + o(1), \quad x \to -\infty,$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for some coefficients  $R_0^{\epsilon}(\lambda)$  (the *reflection coefficient*) and  $T_0^{\epsilon}(\lambda)$  (the *transmission coefficient*).

### Review

#### Semiclassical approximation of $\mathscr{S}$

Under suitable additional conditions on  $\rho_0$  and  $u_0$ , the reflection coefficient  $R_0^{\epsilon}(\lambda)$  can be approximated accurately in the limit  $\epsilon \to 0$  by

$$\tilde{R}_0^\epsilon(\lambda) := \chi_{[\lambda_-,\lambda_+]}(\lambda) \sqrt{1 - e^{-2\tau(\lambda)/\epsilon}} e^{-2i\Phi(\lambda)/\epsilon}$$

where  $\lambda_{-} := \inf_{x \in \mathbb{R}} \alpha(x)$  and  $\lambda_{+} := \sup_{x \in \mathbb{R}} \beta(x)$  with

$$\alpha(x) := -\frac{1}{2}u_0(x) - \sqrt{\rho_0(x)}$$
 and  $\beta(x) := -\frac{1}{2}u_0(x) + \sqrt{\rho_0(x)}$ 

and where

$$\begin{aligned} \tau(\lambda) &:= \int_{x_-(\lambda)}^{x_+(\lambda)} \sqrt{\rho_0(y) - (\lambda + \frac{1}{2}u_0(y))^2} \, dy \\ \Phi(\lambda) &:= \frac{1}{2}S(x_+(\lambda)) + \lambda x_+(\lambda) \\ &\quad - \int_{x_+(\lambda)}^{+\infty} \left[ \sigma \sqrt{(\lambda + \frac{1}{2}u_0(y))^2 - \rho_0(y)} - (\lambda + \frac{1}{2}u_0(y)) \right] \, dy \\ \sigma &:= \operatorname{sgn}(\lambda + \frac{1}{2}u_0(+\infty)). \end{aligned}$$

Inverse Scattering Transform:  $\psi^{\epsilon} = \mathscr{S}^{-1}(e^{2i\lambda^2 t/\epsilon}R_0^{\epsilon})$ 

Solve (for each fixed *x* and *t*) the following Riemann-Hilbert problem: seek  $\mathbf{M} : \mathbb{C} \setminus \mathbb{R} \to SL(2, \mathbb{C})$  such that:

- Analyticity: M is analytic in each half-plane, and takes boundary values  $M_{\pm} : \mathbb{R} \to SL(2, \mathbb{C})$  on the real line from  $\mathbb{C}_{\pm}$ .
- Jump Condition: The boundary values are related by

$$\mathbf{M}_{+}(\lambda) = \mathbf{M}_{-}(\lambda) \begin{bmatrix} 1 - |\mathbf{R}_{0}^{\boldsymbol{\epsilon}}(\lambda)|^{2} & -e^{-2i(\lambda x + \lambda^{2}t)/\boldsymbol{\epsilon}} \mathbf{R}_{0}^{\boldsymbol{\epsilon}}(\lambda)^{*} \\ e^{2i(\lambda x + \lambda^{2}t)/\boldsymbol{\epsilon}} \mathbf{R}_{0}^{\boldsymbol{\epsilon}}(\lambda) & 1 \end{bmatrix}, \ \lambda \in \mathbb{R}.$$

• Normalization: As  $\lambda \to \infty$ ,  $\mathbf{M}(\lambda) \to \mathbb{I}$ .

The solution of the initial-value problem is given by

$$\psi^{\epsilon}(x,t) = 2i \lim_{\lambda \to \infty} \lambda M_{12}(\lambda).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

### Modification of Initial Data

We are going to formulate the Riemann-Hilbert problem with  $\tilde{R}_0^{\epsilon}(\lambda)$  in place of  $R_0^{\epsilon}(\lambda)$ . This requires some comment because it is not obvious that  $\tilde{R}_0^{\epsilon}(\lambda)$  is even in the image of  $\mathscr{S}$ .

The key point is that if  $R_0^{\epsilon}(\lambda)$  is any function for which the Riemann-Hilbert problem can be solved, then the extracted potential  $\psi^{\epsilon} := 2i \lim_{\lambda \to \infty} \lambda M_{12}(\lambda)$  is a solution of the defocusing nonlinear Schrödinger equation. Indeed, the matrix  $\mathbf{W}(\lambda) := \mathbf{M}(\lambda)e^{i(\lambda x + \lambda^2 t)\sigma_3/\epsilon}$  satisfies jump conditions that are independent of *x* and *t*, and therefore

$$\mathbf{U} := \boldsymbol{\epsilon} \frac{\partial \mathbf{W}}{\partial x} \mathbf{W}^{-1}$$
 and  $\mathbf{V} := \boldsymbol{\epsilon} \frac{\partial \mathbf{W}}{\partial t} \mathbf{W}^{-1}$ 

are entire functions of  $\lambda$ . In fact, one can check that **U** (**V**) is a linear (quadratic) function. These are precisely the coefficient matrices in the Lax pair (cf. Lecture 1). The existence of **W** as a simultaneous fundamental solution matrix guarantees the compatibility, which implies that  $\psi^{\epsilon}$  solves the desired nonlinear PDE.

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

- We will show directly that after replacing  $R_0^{\epsilon}(\lambda)$  by its approximation  $\tilde{R}_0^{\epsilon}(\lambda)$ :
  - The Riemann-Hilbert problem can indeed be solved as long as ε is sufficiently small.
  - When t = 0, the extracted potential  $\psi^{\epsilon}$  is close in the limit  $\epsilon \to 0$  to the actual initial data.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Of course  $\psi^\epsilon$  is also an exact solution of the defocusing nonlinear Schrödinger equation.

Associated singular integral equations

Let  $\Sigma$  be an oriented contour (perhaps with self-intersection points), and let  $\mathbf{V}: \Sigma \to SL(2, \mathbb{C})$  be a given jump matrix decaying to  $\mathbb{I}$  as  $\lambda \to \infty$  along any unbounded arcs of  $\Sigma$ . A general Riemann-Hilbert problem is the following: find  $\mathbf{M}: \mathbb{C} \setminus \Sigma \to SL(2, \mathbb{C})$  such that:

- Analyticity: M is analytic in its domain of definition, and takes boundary values  $M_{\pm}: \Sigma \to SL(2, \mathbb{C})$  on  $\Sigma$  from the left (+) and right (-).
- Jump Condition: The boundary values are related by  $\mathbf{M}_{+}(\lambda) = \mathbf{M}_{-}(\lambda)\mathbf{V}(\lambda)$  for  $\lambda \in \Sigma$ .
- Normalization: As  $\lambda \to \infty$ ,  $\mathbf{M}(\lambda) \to \mathbb{I}$ .

This problem can be studied by converting it into a linear system of singular integral equations.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

### Solution of Riemann-Hilbert Problems

Associated singular integral equations

Subtract  $\mathbf{M}_{-}(\lambda)$  from both sides of the jump condition:

$$\mathbf{M}_{+}(\lambda) - \mathbf{M}_{-}(\lambda) = \mathbf{M}_{-}(\lambda)(\mathbf{V}(\lambda) - \mathbb{I}), \quad \lambda \in \Sigma.$$

Taking into account the analyticity of **M** in  $\mathbb{C} \setminus \mathbb{I}$  and the asymptotic value of  $\mathbb{I}$  as  $\lambda \to \infty$  it is necessary that  $\mathbf{M}(\lambda)$  is given by the Cauchy integral (Plemelj formula):

$$\mathbf{M}(\lambda) = \mathbb{I} + \frac{1}{2\pi i} \int_{\Sigma} \frac{\mathbf{M}_{-}(\mu)(\mathbf{V}(\mu) - \mathbb{I})}{\mu - \lambda} \, d\mu, \quad \lambda \in \mathbb{C} \setminus \Sigma.$$

Letting  $\lambda$  tend to  $\Sigma$  from the right we obtain a closed equation for the boundary value  $\mathbf{M}_{-}(\lambda)$ ,  $\lambda \in \Sigma$ :

$$\begin{split} \mathbf{X}(\lambda) &- \frac{1}{2\pi i} \int_{\Sigma} \frac{\mathbf{X}(\mu) (\mathbf{V}(\mu) - \mathbb{I})}{\mu - \lambda_{-}} \, d\mu = \frac{1}{2\pi i} \int_{\Sigma} \frac{\mathbf{V}(\mu) - \mathbb{I}}{\mu - \lambda_{-}} \, d\mu, \quad \lambda \in \Sigma, \\ \text{where } \mathbf{X}(\lambda) &:= \mathbf{M}_{-}(\lambda) - \mathbb{I}. \end{split}$$

### Solution of Riemann-Hilbert Problems

Associated singular integral equations

If the jump matrix V depends on parameters (e.g., x, t,  $\epsilon$ ), one can consider the asymptotic behavior of the Riemann-Hilbert problem with respect to one or more parameters. While one could attempt to analyze the singular equation, this would generally be a difficult (perhaps impossible) task, and we will proceed differently.

The singular integral equation is perhaps the most useful in the *small* norm setting. This means that  $\mathbf{V} - \mathbb{I}$  is small in both the  $L^2(\Sigma)$  and  $L^{\infty}(\Sigma)$  sense. This is a consequence of the fact that for a general class of contours  $\Sigma$ , the operator

$$\mathbf{F} \mapsto rac{1}{2\pi i} \int_{\Sigma} rac{\mathbf{F}(\mu) \, d\mu}{\mu - \lambda_-}$$

is bounded on  $L^2(\Sigma)$ , with a norm that only depends on geometrical details of  $\Sigma$ . See McIntosh, Coifman, Meyer for Lipschitz arcs, and Beals and Coifman for self-intersection points.

Associated singular integral equations

For problems of small norm type, the following hold true:

- The singular integral equation can be solved in L<sup>2</sup>(Σ) by iteration (contraction mapping, or Neumann series). This guarantees existence and uniqueness of the solution.
- It also allows the solution to be constructed (approximated with arbitrary accuracy and estimated). The  $L^2(\Sigma)$  norm of **X** is proportional to that of  $\mathbf{V} \mathbb{I}$ .
- Under suitable other technical assumptions, M(λ) has an asymptotic expansion as λ → ∞:

$$\mathbf{M}(\lambda) = \mathbb{I} + \sum_{n=1}^{N} \lambda^{-n} \mathbf{M}_n + O(\lambda^{-(N+1)}), \quad \lambda \to \infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and the moments  $M_n$  are bounded in terms of norms of V - I.

### The Riemann-Hilbert Problem for Semiclassical Defocusing NLS

Seek  $M:\mathbb{C}\setminus [\lambda_-,\lambda_+]\to SL(2,\mathbb{C})$  with the following properties:

- Analyticity: M is analytic in its domain of definition and takes boundary values M<sub>±</sub>(λ) on (λ<sub>-</sub>, λ<sub>+</sub>) from C<sub>±</sub>.
- Jump Condition:  $M_+(\lambda) = M_-(\lambda)V(\lambda)$  for  $\lambda_- < \lambda < \lambda_+$ , where

$$\mathbf{V}(\lambda) = \begin{bmatrix} e^{-2\tau(\lambda)/\epsilon} & -e^{-2i\theta(\lambda;x,t)/\epsilon}H^{\epsilon}(\lambda) \\ e^{2i\theta(\lambda;x,t)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix},$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 $\theta(\lambda; x, t) := \lambda x + \lambda^2 t - \Phi(\lambda)$ , and  $H^{\epsilon}(\lambda) := \sqrt{1 - e^{-2\tau(\lambda)/\epsilon}}$ .

• Normalization: As  $\lambda \to \infty$ ,  $\mathbf{M}(\lambda) \to \mathbb{I}$ .

This is *not* a small-norm problem in the semiclassical limit  $\epsilon \to 0$ .

### **Outline of Method**

We will apply the *steepest descent method* developed for Riemann-Hilbert problems by Deift and Zhou (for the first application to semiclassical asymptotics see Deift, Venakides, and Zhou, 1997). The general steps in the method are:

- Control of oscillations. An analogue of the WKB exponent *f* is introduced, a scalar-valued analytic function  $g : \mathbb{C} \setminus [\lambda_-, \lambda_+] \to \mathbb{C}$  with  $g(\lambda) \to 0$  as  $\lambda \to \infty$ . The substitution  $\mathbf{M}(\lambda) := \mathbf{N}(\lambda)e^{ig(\lambda)\sigma_3/\epsilon}$  implies an equivalent Riemann-Hilbert problem for  $\mathbf{N}(\lambda)$  whose jump matrix involves the boundary values taken on  $[\lambda_-, \lambda_+]$  by *g*. The function *g* is selected to control the oscillations in the off-diagonal elements of the jump matrix.
- Steepest descent. Based on the control afforded by introduction of *g*, monotone phases are deformed into the complex plane with the help of two types of matrix factorizations. This step amounts to a substitution  $N(\lambda) := O(\lambda)L(\lambda)$ , where  $L(\lambda)$  is an explicit, piecewise-analytic matrix function.

### **Outline of Method**

- **3** Parametrix construction. The jump matrix for **O** has obvious asymptotics as  $\epsilon \to 0$ , suggesting a certain explicit approximation for **O**, denoted  $\dot{\mathbf{O}}(\lambda)$  and called a *parametrix*. The parametrix is defined as an *outer parametrix* away from exceptional points in the interval  $[\lambda_-, \lambda_+]$ . Near the exceptional points one installs certain *inner parametrices*.
- **3** Error analysis by small norm theory. We compare the unknown matrix  $O(\lambda)$  with its explicit parametrix  $\dot{O}(\lambda)$  by considering the *error matrix*  $E(\lambda) := O(\lambda)\dot{O}(\lambda)^{-1}$ . While unknown, one uses properties of the explicit parametrix to show that  $E(\lambda)$  satisfies the conditions of a Riemann-Hilbert problem of small-norm type in the semiclassical limit  $\epsilon \to 0$ . This implies that E I is small as  $\epsilon \to 0$ .
- Extraction of the solution. By unraveling the steps:

$$\mathbf{M}(\lambda) = \mathbf{N}(\lambda)e^{ig(\lambda)\sigma_3/\epsilon} = \mathbf{O}(\lambda)\mathbf{L}(\lambda)e^{ig(\lambda)\sigma_3/\epsilon} = \mathbf{E}(\lambda)\dot{\mathbf{O}}(\lambda)\mathbf{L}(\lambda)e^{ig(\lambda)\sigma_3/\epsilon}$$

where only the error term is not explicit. Then extract  $\psi^{\epsilon}(x,t)$  by

$$\psi^{\epsilon}(x,t) = 2i \lim_{\lambda \to \infty} \lambda M_{12}(\lambda).$$

We're on a boat... I'm your captain... join me now. —Tom Waits, Big Time



<ロ> (四)、(四)、(日)、(日)、

- 2

#### Step 1: Control of Oscillations Choice of g-function

Making the substitution  $\mathbf{M}(\lambda) = \mathbf{N}(\lambda)e^{ig(\lambda)\sigma_3/\epsilon}$ , and using the facts that  $g: \mathbb{C} \setminus [\lambda_-, \lambda_+] \to \mathbb{C}$  is analytic and  $g(\infty) = 0$ , we can easily see that  $\mathbf{N}: \mathbb{C} \setminus [\lambda_-, \lambda_+] \to SL(2, \mathbb{C})$  satisfies the conditions of this Riemann-Hilbert problem:

- Analyticity: N is analytic in C \ [λ<sub>−</sub>, λ<sub>+</sub>], taking boundary values N<sub>±</sub>(λ) on [λ<sub>−</sub>, λ<sub>+</sub>] from C<sub>±</sub>.
- Jump Condition: The boundary values are related by  $N_+(\lambda) = N_-(\lambda)V^{(N)}(\lambda)$  for  $\lambda_- < \lambda < \lambda_+$ , where

$$\mathbf{V}^{(\mathbf{N})}(\lambda) := \begin{bmatrix} e^{2(\Delta(\lambda) - \tau(\lambda))/\epsilon} & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & e^{-2\Delta(\lambda)/\epsilon} \end{bmatrix},$$

 $2\Delta(\lambda) := -i(g_+(\lambda) - g_-(\lambda)), \text{ and } 2\phi(\lambda) := 2\theta(\lambda) - g_+(\lambda) - g_-(\lambda).$ • Normalization: As  $\lambda \to \infty$ ,  $\mathbf{N}(\lambda) \to \mathbb{I}$ .

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Choice of *g*-function

We suppose that  $g(\lambda) = g(\lambda^*)^*$  can be found so that  $(\lambda_-, \lambda_+)$  can be partitioned into three types of subintervals:

- Voids: These are characterized by the conditions  $\Delta(\lambda) \equiv 0$  and  $\phi'(\lambda) > 0$ .
- Bands: These are characterized by the conditions  $0 < \Delta(\lambda) < \tau(\lambda)$  and  $\phi'(\lambda) \equiv 0$ .
- Saturated regions: These are characterized by the conditions  $\Delta(\lambda) \equiv \tau(\lambda)$  and  $\phi'(\lambda) < 0$ .

We sometimes collectively refer to voids and saturated regions as *gaps*. We always assume that gaps are separated by bands, and that the left and right-most subintervals of  $(\lambda_-, \lambda_+)$  are gaps.

We now examine the consequences of each type of interval for the jump matrix  $\mathbf{V}^{(\mathbf{N})}(\lambda).$ 

Under the condition that  $\Delta(\lambda) \equiv 0$ , the jump matrix  $V^{(N)}(\lambda)$  has an "upper-lower" factorization:

$$\mathbf{V}^{(\mathbf{N})}(\lambda) = \begin{bmatrix} 1 & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix}.$$

Let us assume that  $\phi(\lambda)$  and  $\tau(\lambda)$  are analytic (this will be the case if the initial data functions  $u_0$  and  $\rho_0$  are analytic). Then the condition  $\phi'(\lambda) > 0$  makes  $\phi(\lambda)$  a real analytic function that is strictly increasing in the void interval. By the Cauchy-Riemann equations, it follows that the imaginary part of  $\phi(\lambda)$  is positive (negative) in the upper (lower) half-plane.

This implies that the first (second) matrix factor has an analytic continuation into the lower (upper) half-plane that is exponentially close to the identity matrix in the limit  $\epsilon \to 0$ .

The strict inequalities  $0 < \Delta(\lambda) < \tau(\lambda)$  imply that the diagonal elements of  $V^{(N)}(\lambda)$ , namely

$$e^{2(\Delta(\lambda)- au(\lambda))/\epsilon}$$
 and  $e^{-2\Delta(\lambda)/\epsilon}$ 

are both exponentially small in the semiclassical limit  $\epsilon \to 0$ . The condition  $\phi'(\lambda) \equiv 0$  together with the inequality  $\tau(\lambda) > 0$  that holds for all  $\lambda \in (\lambda_-, \lambda_+)$  then implies that  $\mathbf{V}^{(\mathbf{N})}(\lambda)$  is exponentially close in the semiclassical limit to a constant off-diagonal matrix:

$$\mathbf{V}^{(\mathbf{N})}(\lambda) = \begin{bmatrix} 0 & -e^{-2i\phi/\epsilon} \\ e^{2i\phi/\epsilon} & 0 \end{bmatrix} + \text{exponentially small terms}.$$

The real constant  $\phi$  can be different for different bands, and it generally can depend on *x* and *t* (but not  $\epsilon$ ).

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

#### Step 1: Control of Oscillations Saturated Regions

Under the condition that  $\Delta(\lambda) \equiv \tau(\lambda)$ , the jump matrix  $\mathbf{V}^{(\mathbf{N})}(\lambda)$  has a "lower-upper" factorization:

$$\mathbf{V}^{(\mathbf{N})}(\lambda) = \begin{bmatrix} 1 & 0\\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix} \begin{bmatrix} 1 & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda)\\ 0 & 1 \end{bmatrix}$$

The condition  $\phi'(\lambda) < 0$  makes  $\phi(\lambda)$  a real analytic function that is strictly decreasing in the void interval. By the Cauchy-Riemann equations, it follows that the imaginary part of  $\phi(\lambda)$  is negative (positive) in the upper (lower) half-plane.

This again implies that the first (second) matrix factor has an analytic continuation into the lower (upper) half-plane that is exponentially close to the identity matrix in the limit  $\epsilon \rightarrow 0$ .

Let us construct *g* by temporarily setting aside the inequalities. Suppose that there are N + 1 bands in  $(\lambda_-, \lambda_+)$  that we will denote by  $(a_j, b_j)$  with  $a_0 < b_0 < a_1 < b_1 < \cdots < a_N < b_N$ . The complementary intervals are either voids or saturated regions.

Recall that the boundary values of g are subject to the following conditions:

- g<sub>+</sub>(λ) − g<sub>-</sub>(λ) = 0 which implies g'<sub>+</sub>(λ) − g'<sub>-</sub>(λ) = 0 for λ in voids and outside of [λ<sub>-</sub>, λ<sub>+</sub>].
- $g'_+(\lambda) + g'_-(\lambda) = 2\theta'(\lambda)$  for  $\lambda$  in bands.
- $g_+(\lambda) g_-(\lambda) = 2i\tau(\lambda)$  which implies  $g'_+(\lambda) g'_-(\lambda) = 2i\tau'(\lambda)$  for  $\lambda$  in saturated regions.

We therefore know  $g'_+ - g'_-$  everywhere along  $\mathbb{R}$  with the exception of the band intervals, where we know instead  $g'_+ + g'_-$ .

Formula for g

Consider the function  $r(\lambda)$  defined as follows:

• 
$$r(\lambda)^2 = \prod_{n=0}^{N} (\lambda - a_n)(\lambda - b_n)$$
  
•  $r(\lambda)$  is analytic for  $\lambda \in \mathbb{C} \setminus \bigcup_{n=0}^{N} [a_n, b_n]$ .  
•  $r(\lambda) = \lambda^{N+1} + O(\lambda^N)$  as  $\lambda \to \infty$ .

1.

The boundary values of *r* on any band satisfy  $r_+(\lambda) + r_-(\lambda) = 0$ . Consider instead of  $g'(\lambda)$  the function  $k(\lambda) := g'(\lambda)/r(\lambda)$ . This function is analytic where g' is and satisfies

$$k_{+}(\lambda) - k_{-}(\lambda) = \begin{cases} 0, \\ \frac{2\theta'(\lambda)}{r_{+}(\lambda)} \\ \frac{2i\tau'(\lambda)}{r(\lambda)} \end{cases}$$

 $\lambda$  in voids or outside of  $[\lambda_-, \lambda_+]$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\lambda$  in bands

 $\lambda$  in saturated regions.

Up to an entire function (which must be zero for consistency with  $g'(\lambda) = O(\lambda^{-2})$  as  $\lambda \to \infty$ ), *k* must be given by the Plemelj formula:

$$k(\lambda) = \frac{1}{\pi i} \int_{\text{bands}} \frac{\theta'(\mu) \, d\mu}{r_+(\mu)(\mu - \lambda)} + \frac{1}{\pi} \int_{\text{saturated regions}} \frac{\tau'(\mu) \, d\mu}{r(\mu)(\mu - \lambda)}, \quad \text{so,}$$
$$g'(\lambda) = \frac{r(\lambda)}{\pi i} \int_{\text{bands}} \frac{\theta'(\mu) \, d\mu}{r_+(\mu)(\mu - \lambda)} + \frac{r(\lambda)}{\pi} \int_{\text{saturated regions}} \frac{\tau'(\mu) \, d\mu}{r(\mu)(\mu - \lambda)}.$$

The additional condition  $g'(\lambda) = O(\lambda^{-2})$  as  $\lambda \to \infty$  is equivalent to  $k(\lambda) = O(\lambda^{-(N+3)})$ . But since  $(\mu - \lambda)^{-1} \sim -\lambda^{-1} - \mu\lambda^{-2} - \mu^2\lambda^{-3} + \cdots$ ,

 $k(\lambda)$  has the Laurent series  $k(\lambda) = k_1 \lambda^{-1} + k_2 \lambda^{-2} + k_3 \lambda^{-3} + \cdots$  where

$$k_n := -\frac{1}{\pi i} \int_{\text{bands}} \frac{\theta'(\mu)\mu^{n-1} d\mu}{r_+(\mu)} - \frac{1}{\pi} \int_{\text{saturated regions}} \frac{\tau'(\mu)\mu^{n-1} d\mu}{r(\mu)}.$$
  
We therefore require that  $k_n = 0$  for  $n = 1, \dots, N+2$ .

With the conditions  $k_1 = \cdots = k_{N+2} = 0$ , we can obtain  $g(\lambda)$  from  $g'(\lambda)$  by contour integration:

$$g(\lambda) = \int_{\infty}^{\lambda} g'(\mu) \, d\mu \quad ext{because } g' ext{ is integrable at } \infty.$$

Note, however, that while we have arranged that  $g'_+ - g'_- = 0$  in voids and  $g'_+ - g'_- = 2i\tau'$  in saturated regions, we need to get integration constants correct to guarantee  $g_+ - g_- = 0$  in voids and  $g_+ - g_- = 2i\tau$ in saturated regions.

Since  $\tau(\lambda_{\pm}) = 0$ , one can check that the integration constants are automatically correct in the exterior gaps  $(\lambda_{-}, a_0)$  and  $(b_N, \lambda_{+})$ . There remains one condition to impose for each of the *N* interior gaps.

Formula for g

One can check that:

 If (b<sub>n</sub>, a<sub>n+1</sub>) is a void, then g<sub>+</sub> − g<sub>−</sub> = 0 in this interval is equivalent to the contour integral condition

$$\oint_{A_{n+1}} g'(\lambda) \, d\lambda = 0.$$

If (b<sub>n</sub>, a<sub>n+1</sub>) is a saturated region, then g<sub>+</sub> − g<sub>−</sub> = 2iτ in this interval is equivalent to the contour integral condition



In total, we have assembled 2N + 2 conditions on 2N + 2 unknowns  $a_0, b_0, \ldots, a_N, b_N$ . If these equations have a unique solution, then associated with the symbol sequence  $(s_0, s_1, \ldots, s_{N+1})$ ,  $s_n = V$  or  $s_n = S$ , indicating the types of the gaps in left-to-right order, we have determined  $g(\lambda)$ .

Of course this analysis has ignored the inequalities that the boundary values of g are supposed to satisfy. These inequalities should select:

- The genus N.
- The symbol sequence  $(s_0, \ldots, s_{N+1})$ .

The procedure in practice is therefore to determine *N* and  $(s_0, \ldots, s_{N+1})$  so that the inequalities are true. The independent variables *x* and *t* are parameters in this procedure. In particular, the genus *N* will depend on (x, t).

### Step 2: Steepest Descent

#### **Opening lenses**

Let us suppose that we have found a g-function. We now make a substitution to exploit the matrix factorizations designed for use in the gaps. Let  $\Omega^V_\pm$   $(\Omega^S_\pm)$  denote the union of thin lens-shaped domains in  $\mathbb{C}_\pm$  that abut voids (saturated regions). Define the piecewise analytic matrix function L by

$$\mathbf{L}(\lambda) := \begin{cases} \begin{bmatrix} 1 & 0 \\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathbf{V}}_{+}, \\ \begin{bmatrix} 1 & 0 \\ -e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathbf{S}}_{-}, \\ \begin{bmatrix} 1 & e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ 0 & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathbf{V}}_{-} \\ \begin{bmatrix} 1 & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ 0 & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathbf{S}}_{+} \\ \mathbb{I}, & \text{otherwise.} \end{cases}$$

### Step 2: Steepest Descent

**Opening lenses** 

Make the substitution  $N(\lambda) = O(\lambda)L(\lambda)$ . Then  $O(\lambda)$  satisfies:

- Analyticity: O is analytic in  $\mathbb{C} \setminus \Sigma^{(O)}$ , taking boundary values  $O_+$ ( $O_-$ ) on each oriented arc of  $\Sigma^{(O)}$  from the left (right).
- Jump Condition: The boundary values are related by  $\mathbf{O}_+(\lambda) = \mathbf{O}_-(\lambda)\mathbf{V}^{(\mathbf{O})}$  for  $\lambda \in \Sigma^{(\mathbf{O})}$  (see figure).
- Normalization: As  $\lambda \to \infty$ ,  $\mathbf{O}(\lambda) \to \mathbb{I}$ .



### Step 3: Parametrix Construction

Outer parametrix

Letting  $\epsilon \to 0$  pointwise in  $\lambda$  along  $\Sigma^{(\mathbf{O})}$ , the jump matrix  $\mathbf{V}^{(\mathbf{O})}(\lambda)$  converges to  $\mathbb{I}$ , except along the band  $(a_n, b_n)$ , where

$$\mathbf{V^{(O)}}(\lambda) = egin{bmatrix} 0 & -e^{-2i\phi_n/\epsilon} \ e^{2i\phi_n/\epsilon} & 0 \end{bmatrix} + ext{exponentially small terms}$$

where  $\phi_n$  are well-defined real-valued functions of (x, t) that are independent of  $\lambda$  and  $\epsilon$ . This suggests a formal approximation for  $\mathbf{O}(\lambda)$ that solves the following problem: seek  $\dot{\mathbf{O}}^{(\text{out})} : \mathbb{C} \setminus \text{bands} \to \text{SL}(2, \mathbb{C})$ with the properties

- Analyticity:  $\dot{\mathbf{O}}^{(\text{out})}$  is analytic where defined and takes boundary values  $\dot{\mathbf{O}}^{(\text{out})}_{\pm}(\lambda)$  from  $\mathbb{C}_{\pm}$  on each band  $(a_n, b_n)$ .
- Jump Condition: The boundary values satisfy (n = 0, ..., N)

$$\dot{\mathbf{O}}^{(\mathrm{out})}_{+}(\lambda) = \dot{\mathbf{O}}^{(\mathrm{out})}_{-}(\lambda) \begin{bmatrix} 0 & -e^{-2i\phi_n/\epsilon} \\ e^{2i\phi_n/\epsilon} & 0 \end{bmatrix}, \quad a_n < \lambda < b_n.$$

• Normalization: As  $\lambda \to \infty$ ,  $\dot{\mathbf{O}}^{(\text{out})}(\lambda) \to \mathbb{I}_{a}$ , where  $\lambda \to \infty$ ,  $\dot{\mathbf{O}}^{(\text{out})}(\lambda) \to \mathbb{I}_{a}$ 

### Step 3: Parametrix Construction

Outer parametrix

Since the jump matrix is discontinuous at the band endpoints, we need to specify a singularity at each; we will suppose that for all n,

$$\dot{\mathbf{O}}^{(\text{out})}(\lambda) = O((\lambda - a_n)^{-1/4}(\lambda - b_n)^{-1/4}), \quad \lambda \to a_n, b_n.$$

With this condition, there is a unique solution for  $\dot{\mathbf{O}}^{(\text{out})}(\lambda)$  that we call the *outer parametrix*. In general, it is constructed in terms of Riemann theta functions of genus *N*, but for *N* = 0 (one band) the solution is elementary:

$$\dot{\mathbf{O}}^{(\text{out})}(\lambda) = e^{-i\phi_0\sigma_3/\epsilon} \mathbf{A}\gamma(\lambda)^{\sigma_3} \mathbf{A}^{-1} e^{i\phi_0\sigma_3/\epsilon}, \quad \text{where} \quad \mathbf{A} := \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$$

and where  $\gamma(\lambda)$  is the function analytic for  $\lambda \in \mathbb{C} \setminus [a_0, b_0]$  that satisfies

$$\gamma(\lambda)^4 = rac{\lambda - b_0}{\lambda - a_0}$$
 and  $\lim_{\lambda \to \infty} \gamma(\lambda) = 1.$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Inner parametrices

The approximation of the jump matrix  $\mathbf{V}^{(\mathbf{O})}(\lambda)$  leading to the outer parametrix fails to be uniformly valid near the band endpoints.

Elsewhere the accuracy is uniformly of order  $O(1/\log(\epsilon^{-1}))$ , dominated by behavior near  $\lambda_{\pm}$ . Away from these points we have exponential accuracy.

Therefore, it it reasonable that another approximation of  $O(\lambda)$  will need to be constructed for each small disk centered at a band endpoint. The recipe for this construction is the following:

• Replace the three jump matrices locally by exponentially accurate approximations by replacing  $H^{\epsilon}(\lambda)$  with 1 and dropping the uniformly exponentially small diagonal entry of  $\mathbf{V}^{(\mathbf{O})}(\lambda)$  on the band.

### Step 3: Parametrix Construction

Inner parametrices

- Find a matrix that locally solves the resulting jump conditions exactly.
  - Use conformal mapping λ → ζ to simplify the exponents (goal: make them all proportional to ζ<sup>3/2</sup>).
  - Solve the simplified jump conditions with the help of Airy functions.
- Multiply the solution on the left by a matrix holomorphic near the band endpoint (which cannot alter the jump conditions) chosen to match well onto the outer parametrix on the disk boundary.

The result of this procedure is a matrix function  $\dot{\mathbf{O}}^{(\text{in},D)}(\lambda)$  called an *inner parametrix* defined in an  $\epsilon$ -independent disk *D* containing the band endpoint of interest with the following properties:

• 
$$\dot{\mathbf{O}}^{(\mathrm{in},D)}(\lambda) = O(\epsilon^{-1/6})$$
 uniformly for  $\lambda \in D$ .

- $\dot{\mathbf{O}}^{(\text{in},D)}_{+}(\lambda) = \dot{\mathbf{O}}^{(\text{in},D)}_{-}(\lambda)(\mathbb{I} + \text{exponentially small})\mathbf{V}^{(\mathbf{O})}(\lambda)$  for  $\lambda \in \Sigma^{(\mathbf{O})} \cap D$ .
- $\dot{\mathbf{O}}^{(\mathrm{in},D)}(\lambda)\dot{\mathbf{O}}^{(\mathrm{out})}(\lambda)^{-1} = \mathbb{I} + O(\epsilon)$  uniformly for  $\lambda \in \partial D$ .

Each band endpoint gets its own disk  $D_{a_0}, \ldots, D_{b_N}$ , and its own inner parametrix. Combining these definitions with the outer parametrix gives rise to an explicit, ad-hoc approximation of  $O(\lambda)$  called the *global parametrix* denoted  $\dot{O}(\lambda)$  and defined as follows:

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\dot{\mathbf{O}}(\lambda) := \begin{cases} \dot{\mathbf{O}}^{(\mathrm{in}, D_p)}(\lambda), & \lambda \in D_p, \quad p = a_0, \dots, b_N, \\ \dot{\mathbf{O}}^{(\mathrm{out})}(\lambda), & \text{otherwise.} \end{cases}$$

### Step 4: Error Analysis by Small Norm Theory

Let the error of the approximation be defined as the matrix function

 $\mathbf{E}(\lambda) := \mathbf{O}(\lambda) \dot{\mathbf{O}}(\lambda)^{-1}$ 

wherever both factors make sense. This makes  $E(\lambda)$  analytic on the complement of an arcwise oriented contour  $\Sigma^{(E)}$  (pictured).



While O is only specified as the solution of a Riemann-Hilbert problem, the global parametrix  $\dot{O}(\lambda)$  is known. Therefore we may regard the mapping  $O \rightarrow E$  as a substitution resulting in an equivalent Riemann-Hilbert problem for E.

### Step 4: Error Analysis by Small Norm Theory

Since both  $O(\lambda) \to I$  (by normalization condition) and  $\dot{O}(\lambda) \to I$  (by construction) as  $\lambda \to \infty$ , we also must have  $E(\lambda) \to I$  in this limit.

By direct calculations, one checks that as a consequence of the uniform boundedness of the outer parametrix outside all disks,

$$\mathbf{E}_+(\lambda) = \mathbf{E}_-(\lambda)(\mathbb{I} + O(1/\log(\epsilon^{-1}))) \quad \text{uniformly for } \lambda \in \Sigma^{(\mathbf{E})}.$$

This means that  $\mathbf{E}(\lambda)$  satisfies the conditions of a Riemann-Hilbert problem of small norm type, with estimates of  $\mathbf{V}^{(\mathbf{E})}(\lambda) - \mathbb{I}$  in all required spaces being  $O(1/\log(\epsilon^{-1}))$ . Small-norm theory therefore implies that:

- E(λ) exists for sufficiently small ε and is unique, and hence (by unraveling the explicit substitutions) the same is true of M(λ).
- $\mathbf{E}(\lambda)$  has a Laurent series (convergent, because  $\Sigma^{(\mathbf{E})}$  is bounded)

$$\mathbf{E}(\lambda) = \mathbb{I} + \sum_{n=1}^{\infty} \mathbf{E}_n \lambda^{-n}$$
 with  $\mathbf{E}_n = O(1/\log(\epsilon^{-1})), \quad \forall n.$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

### Step 5: Extraction of the Solution

Recall that a solution of the defocusing nonlinear Schrödinger equation  $\psi^{\epsilon}(x,t)$  is obtained from the (well-defined for sufficiently small  $\epsilon$ ) solution  $\mathbf{M}(\lambda)$  of the original Riemann-Hilbert problem of inverse scattering with modified reflection coefficient via

$$\psi^{\epsilon}(x,t) = 2i \lim_{\lambda \to \infty} \lambda M_{12}(\lambda).$$

Now we express this in terms of known quantities and the error matrix **E**. Since  $\mathbf{L}(\lambda) = \mathbb{I}$  and  $\dot{\mathbf{O}}(\lambda) = \dot{\mathbf{O}}^{(\text{out})}(\lambda)$  both hold for large enough  $|\lambda|$ ,

$$\begin{split} \psi^{\boldsymbol{\epsilon}}(\boldsymbol{x},t) &= 2i \lim_{\lambda \to \infty} \left[ \mathbf{E}(\lambda) \dot{\mathbf{O}}^{(\text{out})}(\lambda) e^{ig(\lambda)\sigma_3/\boldsymbol{\epsilon}} \right]_{12} \\ &= 2iE_{1,12} + 2i\dot{O}_{1,12}^{(\text{out})} \\ &= 2i\dot{O}_{1,12}^{(\text{out})} + O(1/\log(\boldsymbol{\epsilon}^{-1})). \end{split}$$

When N = 0 (one band,  $(a_0, b_0)$ ), this reads simply

$$\psi^{\epsilon}(x,t) = \frac{1}{2}(b_0 - a_0)e^{-2i\phi_0/\epsilon} + O(1/\log(\epsilon^{-1})), \quad \frac{\partial\phi_0}{\partial x} = \frac{1}{2}(a_0 + b_0).$$

### The *g*-Function When t = 0

We want to give some further details of this procedure in some simple cases. We first claim that the *g*-function can be determined explicitly when t = 0, and that N = 0 (one band) suffices in this case.

Recall that for N = 0 there are just two conditions to be satisfied by the endpoints  $a_0, b_0$ :  $k_1 = k_2 = 0$ . We have the following result

#### Proposition

Set t = 0. The equations  $k_1 = k_2 = 0$  are simultaneously satisfied by

$$a_0 = \alpha(x)$$
 and  $b_0 = \beta(x)$ 

with symbol sequences

- (V, V) where  $\alpha'(x) > 0$  and  $\beta'(x) < 0$
- (V,S) where  $\alpha'(x) > 0$  and  $\beta'(x) > 0$
- (S, V) where  $\alpha'(x) < 0$  and  $\beta'(x) < 0$
- (S,S) where  $\alpha'(x) < 0$  and  $\beta'(x) > 0$ .

### The *g*-Function When t = 0

One can further confirm that the necessary inequalities are also satisfied by the specified configuration when t = 0. This information is summarized in this figure:



▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のへで

### Perturbation Theory for Small Time

The implicit function theorem can be used to continue the solution to  $k_1 = k_2 = 0$  for small *t* independent of  $\epsilon$ . The necessary inequalities also persist as they hold strictly when t = 0. Therefore we have a genus N = 0 configuration of a single band for all  $x \in \mathbb{R}$  if *t* is sufficiently small.

Implicit differentiation of the conditions  $k_1 = 0$  and  $k_2 = 0$  with respect to *x* and *t* shows that the following equations hold true:

$$\frac{\partial a_0}{\partial t} - \left[\frac{3}{2}a_0 + \frac{1}{2}b_0\right]\frac{\partial a_0}{\partial x} = 0 \quad \text{and} \quad \frac{\partial b_0}{\partial t} - \left[\frac{3}{2}b_0 + \frac{1}{2}a_0\right]\frac{\partial b_0}{\partial x} = 0.$$

Note that setting  $a_0 = -\frac{1}{2}u - \sqrt{\rho}$  and  $b_0 = -\frac{1}{2}u + \sqrt{\rho}$  this system becomes the dispersionless defocusing NLS system

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) = 0$$
 and  $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}\left(\frac{1}{2}u^2 + \rho\right) = 0.$ 

Also,  $\psi^{\epsilon}(x,t) = \sqrt{\rho(x,t)}e^{i\int^{x} u(y,t) \, dy/\epsilon} + O(1/\log(\epsilon^{-1})).$ 

### **Bifurcation Theory**

Jumping genus, Batman!

For larger *t*, the *g*-function theory tiles the (x, t)-plane with regions corresponding to different genera *N*. The earliest point of transition is the shock time for the dispersionless NLS system.



$$\rho_0(x) = \frac{1}{10} + \frac{1}{2}e^{-256x^2}$$

$$u_0(x) = 1$$

$$\epsilon = 0.0122$$
Periodic boundary conditions

Genus bifurcations in the *g*-function are the integrable nonlinear analogues of stationary phase point bifurcations in the linear theory.