
Introduction to Semiclassical Asymptotic Analysis:
Lecture 1

Peter D. Miller

Department of Mathematics
University of Michigan

Scattering and Inverse Scattering in Multidimensions
May 15–23, 2014

University of Kentucky



Outline

1 Motivating Semiclassical Analysis for Dispersive Waves

2 Semiclassical Analysis for Linear Waves

3 Nonlinear Problems: The Defocusing Nonlinear Schrödinger
Equation as a Case Study



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

Zabusky and Kruskal’s experiment (1965) for the Korteweg-de Vries
(KdV) equation

ut + uux +
2
3

uxxx = 0, u(x, 0) = 1 + cos(πx/20).
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Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

The formation of the “undular bore” becomes much more distinct if the
dispersion parameter 2/3 is replaced with a smaller number. Here is a
snapshot at t = 0.4 from the solution of the initial-value problem

ut + 6uux + 10−4uxxx = 0, u(x, 0) = −sech2(x).

[Figure taken from a paper of Claeys and Grava.]



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

We observe:
The solutions of typical initial-value problems for KdV have
undeniable features including

Intervals where the solution is slowly-varying,
Intervals where the solution resembles a slowly-varying train of
more rapid oscillations, and
Moving transitional regions separating the above.

These features become “sharper” as the dispersion parameter
become smaller for fixed initial data. They may be well-defined as
suitable mathematical limits as the dispersion parameter tends to
zero.

Similar phenomena occur for other dispersive equations as well. . .



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

Another example: the initial-value problem for uε = uε(x, t) solving the
sine-Gordon equation:

ε2uεtt − ε2uεxx + sin(uε) = 0, x ∈ R, t > 0,

uε(x, 0) = F(x), εuεt (x, 0) = G(x).

Here ε > 0 is a parameter, and F and G are independent of ε.
Interesting features of uε become better-resolved as ε→ 0 for fixed F
and G. . .



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

The initial data is F(x) ≡ 0 and G(x) = −3 sech(x) with ε = 0.1875.

cos(uε(x, t)) sin(uε(x, t))



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

The initial data is F(x) ≡ 0 and G(x) = −3 sech(x) with ε = 0.09375.

cos(uε(x, t)) sin(uε(x, t))



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

The initial data is F(x) ≡ 0 and G(x) = −3 sech(x) with ε = 0.046875.

cos(uε(x, t)) sin(uε(x, t))



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

Another example. . .
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The focusing nonlinear Schrödinger equation for ψε = ψε(x, t):

iεψεt +
ε2

2
ψεxx + |ψε|2ψε = 0, ψε(x, 0) = 2 sech(x), ε = 0.4.



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

Another example. . .
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The focusing nonlinear Schrödinger equation for ψε = ψε(x, t):

iεψεt +
ε2

2
ψεxx + |ψε|2ψε = 0, ψε(x, 0) = 2 sech(x), ε = 0.2.



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

Another example. . .

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5
x

t

The focusing nonlinear Schrödinger equation for ψε = ψε(x, t):

iεψεt +
ε2

2
ψεxx + |ψε|2ψε = 0, ψε(x, 0) = 2 sech(x), ε = 0.1.



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

Another example. . .
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The focusing nonlinear Schrödinger equation for ψε = ψε(x, t):

iεψεt +
ε2

2
ψεxx + |ψε|2ψε = 0, ψε(x, 0) = 2 sech(x), ε = 0.05.



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

This phenomenon is not only present in nonlinear systems. Consider
the free-particle (linear) Schrödinger equation

iεψεt +
ε2

2
ψεxx = 0, ψε(x, 0) = ψε0(x) =

√
ρ0(x)eiS(x)/ε, S(x) :=

∫ x

0
u0(y) dy.

Here we may consider ρ0 : R→ R+ and u0 : R→ R as fixed and
consider what happens as ε varies.

This example motivates the terminology “semiclassical limit” for the
asymptotic behavior as ε→ 0.



Motivation
Quantifying multiscale phenomena in dispersive wave propagation.

For the linear Schrödinger equation. . .

Plots of |ψε(x, t)|2 for u0(x) = −8 sech2(x) tanh(x) and ρ0(x) = 4 sech4(x):

ε = 0.2 ε = 0.1 ε = 0.05



Mathematical Theory
What gives rise to semiclassical phenomena? How can we calculate?

The initial-value problem for the linear Schrödinger equation can be
solved by the Fourier/Inverse-Fourier transform pair.

1 Direct transform: ψ̂ε0(λ) :=
1

2π

∫
R
ψε0(x)e2iλx/ε dx.

2 Time evolution (from taking the direct transform of the Schrödinger
equation): ψ̂ε(λ, t) = e−2iλ2t/εψ̂ε0(λ).

3 Inverse transform: ψε(x, t) =
2
ε

∫
R
ψ̂ε(λ, t)e−2iλx/ε dλ.

Each step involves ε in a singular way. Alternately, by carefully
exchanging the order of integration in the resulting double integral
formula, the problem can also be solved using Green’s function:

ψε(x, t) =
e−iπ/4
√

2πεt

∫
R

eiI(ξ;x,t)/ε
√
ρ0(ξ) dξ, t > 0, where

I(ξ; x, t) := S(ξ) +
(ξ − x)2

2t



Mathematical Theory
What gives rise to semiclassical phenomena? How can we calculate?

Use the method of stationary phase to analyze the integral as ε ↓ 0:

ψε(x, t) =
1√

t

2P∑
n=0

eiπ((−1)n−1)/4√
|I′′(ξn; x, t)|

√
ρ0(ξn)eiI(ξn;x,t)/ε +O(ε)

where ξn = ξn(x, t), and ξ0 < ξ1 < · · · < ξ2P are the stationary phase
points, that is, the roots (assumed simple) of I′(ξ; x, t) = 0. Note that

I′(ξ; x, t) = u0(ξ) +
ξ − x

t
= 0 ⇔ x = u0(ξ)t + ξ

is the equation for intercepts ξ of characteristics through (x, t) for the
formal limit of the Madelung system (ρε := |ψε|2 and uε := εIm(ψεx/ψ

ε))

ρεt + (ρεuε)x = 0, uεt + uεuεx =
ε2

2

[
ρεxx

2ρε
−
(
ρεx
2ρε

)2
]
.



Mathematical Theory
What gives rise to semiclassical phenomena? How can we calculate?

Here are the characteristic lines in the case u0(x) = −8 sech2(x) tanh(x):



Mathematical Theory
What gives rise to semiclassical phenomena? How can we calculate?

Here are the characteristic lines in the case u0(x) = −8 sech2(x) tanh(x):



Mathematical Theory
What gives rise to semiclassical phenomena? How can we calculate?

The stationary phase formula tells us the following. There is a critical
time t = tc such that:

If t < tc then there is just one characteristic line through each point
and hence just one term in the sum. Thus ψε(x, t) looks like a
modulated plane wave.

If t > tc then there are caustic curves x = x±(t) with x±(tc) = xc
such that

If x < x−(t) or x > x+(t) then there is again just one characteristic
through each point and again ψε(x, t) looks like a modulated plane
wave.

If x−(t) < x < x+(t) then there are three lines through each point
and hence three terms in the sum. There are three interfering terms
in ψε(x, t), and |ψε(x, t)|2 becomes highly oscillatory.

The asymptotically abrupt transitions in the (x, t)-plane arise as
bifurcation points for characteristics or stationary phase points.



Mathematical Theory
What about nonlinear problems?

Similar precision of analysis is available in principle for nonlinear
dispersive wave problems that are integrable by a
direct/inverse-scattering transform:

In place of the Fourier transform of the initial data, we have instead
the direct scattering transform. Usually requires the analysis of a
linear ODE (or PDE) with a spectral parameter to obtain scattering
data (one or more functions of the spectral parameter).
Just as in the linear theory, one has explicit exponential evolution
of the scattering data in time t.
In place of the inverse-Fourier transform of the time-evolved
transform data, one has the inverse-scattering transform. Usually
requires the solution of a linear Riemann-Hilbert problem (or ∂
problem).



The Defocusing Nonlinear Schrödinger Equation
Lax pair representation

Let’s illustrate these steps in a bit more detail for the defocusing
nonlinear Schrödinger equation

iεψεt +
ε2

2
ψεxx−|ψε|2ψε = 0, ψε(x, 0) =

√
ρ0(x)eiS(x)/ε, S(x) :=

∫ x

0
u0(y) dy.

The PDE is the compatibility condition for the two linear problems
(λ ∈ C is the spectral parameter):

ε
∂w
∂x

= Uw, U = U(x, t, λ) :=

[
−iλ ψε

ψε∗ iλ

]

ε
∂w
∂t

= Vw, V = V(x, t, λ) :=

[
−iλ2 − i 1

2 |ψ
ε|2 λψε + i 1

2εψ
ε
x

λψε∗ − i 1
2εψ

ε∗
x iλ2 + i 1

2 |ψ
ε|2
]
.



The Defocusing Nonlinear Schrödinger Equation
Formal semiclassical limit

Introducing real variables (Madelung, 1926)

ρε := |ψε|2 and uε := =
{
εψεx
ψε

}
=⇒ ρε(x, 0) = ρ0(x) and uε(x, 0) = u0(x),

one can check that the defocusing nonlinear Schrödinger equation for
ψε implies the following closed system of equations on ρε and uε:

∂ρε

∂t
+

∂

∂x
(ρεuε) = 0 and

∂uε

∂t
+

∂

∂x

(
1
2

uε2 + ρε
)

=
1
2
ε2∂F[ρε]

∂x

where F[ρ] denotes the expression

F[ρ] :=
1

2ρ
∂2ρ

∂x2 −
(

1
2ρ
∂ρ

∂x

)2

.

Neglecting ε2Fx leads to a closed, ε-independent hyperbolic system
governing expected limits ρ and u, the dispersionless defocusing NLS
system.



The Defocusing Nonlinear Schrödinger Equation
Direct Scattering Transform: Rε0 = S (ψε0)

We need to calculate the Jost solution w of the linear equation

ε
dw
dx

=

[
−iλ

√
ρ0(x)eiS(x)/ε√

ρ0(x)e−iS(x)/ε iλ

]
w,

that is, the solution for λ ∈ R that is determined (assuming sufficiently
rapid decay of ρ0 for large |x|) by the conditions

w(x) =

[
e−iλx/ε

0

]
+ Rε0(λ)

[
0

eiλx/ε

]
+ o(1), x→ +∞

and

w(x) = Tε0(λ)

[
e−iλx/ε

0

]
+ o(1), x→ −∞,

for some coefficients Rε0(λ) (the reflection coefficient) and Tε0(λ) (the
transmission coefficient).



The Defocusing Nonlinear Schrödinger Equation
Inverse Scattering Transform: ψε = S −1(e2iλ2t/εRε0)

For the inverse transform, solve (for each fixed x and t) the following
Riemann-Hilbert problem: seek M : C \ R→ SL(2,C) such that:

Analyticity: M is analytic in each half-plane, and takes boundary
values M± : R→ SL(2,C) on the real line from C±.
Jump Condition: The boundary values are related by

M+(λ) = M−(λ)

[
1− |Rε0(λ)|2 −e−2i(λx+λ2t)/εRε0(λ)∗

e2i(λx+λ2t)/εRε0(λ) 1

]
, λ ∈ R.

Normalization: As λ→∞, M(λ)→ I.
The solution of the initial-value problem is given by

ψε(x, t) = 2i lim
λ→∞

λM12(λ).



Semiclassical Approximation of Rε0
The WKB Method

Recall the linear ODE for the Jost vector w:

ε
dw
dx

=

[
−iλ

√
ρ0(x)eiS(x)/ε√

ρ0(x)e−iS(x)/ε iλ

]
w.

The rapidly oscillatory factors in the coefficient matrix can be removed
by a simple substitution:

w =

[
eiS(x)/(2ε) 0

0 e−iS(x)/(2ε)

]
v = eiS(x)σ3/(2ε)v,

leading to

ε
dv
dx

=

[
−i(λ+ 1

2 u0(x))
√
ρ0(x)√

ρ0(x) i(λ+ 1
2 u0(x))

]
v

because S′(x) = u0(x).



Semiclassical Approximation of Rε0
The WKB Method

If we try to treat the terms proportional to ε� 1 as a perturbation, we
are led to consider the approximate equation:[

−i(λ+ 1
2 u0(x))

√
ρ0(x)√

ρ0(x) i(λ+ 1
2 u0(x))

]
v ≈ 0.

Unless the determinant of the coefficient matrix is zero, i.e.,

(λ+ 1
2 u0(x))2 = ρ0(x),

there is no nontrivial solution. This suggests that, away from
exceptional points, dv/dx must be large, proportional to ε−1. As the
equation is linear, nothing is gained by simply scaling v by ε−1, but
dv/dx can be made large compared to v by an exponential substitution:

v = ef/εu for some scalar function f (x, λ) to be determined.



Semiclassical Approximation of Rε0
The WKB Method

Given f , the substitution implies a linear equation for u:

ε
du
dx

=

[
−i(λ+ 1

2 u0(x))− fx(x, λ)
√
ρ0(x)√

ρ0(x) i(λ+ 1
2 u0(x))− fx(x, λ)

]
u.

The main idea of the WKB method is to choose f so that the modified
coefficient matrix is singular, leading to the possibility that u may vary
slowly, on the scale of x. That is, fx(x, λ) should be an eigenvalue of the
coefficient matrix

H(x, λ) :=

[
−i(λ+ 1

2 u0(x))
√
ρ0(x)√

ρ0(x) i(λ+ 1
2 u0(x))

]
and, to leading order, u should be a corresponding eigenvector of H.



Semiclassical Approximation of Rε0
The WKB Method

The exact equation for u is

ε
du
dx

= (H(x, λ)− fx(x, λ)I)u

and the WKB method is to seek u in the form of an asymptotic series

u ∼ u0(x, λ) + εu1(x, λ) + ε2u2(x, λ) + · · · , ε→ 0.

Substituting this series and equating the terms proportional to the
same powers of ε leads to the leading-order equation

(H(x, λ)− fx(x, λ)I)u0(x, λ) = 0

and the infinite hierarchy of equations for subsequent corrections:

(H(x, λ)− fx(x, λ)I)un(x, λ) =
dun−1

dx
(x, λ), n ≥ 1.



Semiclassical Approximation of Rε0
The WKB Method

The formalism of the WKB method consists of the following steps:
1 Fix fx(x, λ) to be an eigenvalue of H(x, λ) that is smooth as a

function of x in an interval of interest. The characteristic equation
is:

fx(x, λ)2 = ρ0(x)− (λ+ 1
2 u0(x))2.

This makes H(x, λ)− fx(x, λ)I a rank one matrix. Its nullspace is
spanned by (M(x, λ) is an arbitrary nonzero scalar)

y(x, λ) :=
1

M(x, λ)

[
fx(x, λ)− i(λ+ 1

2 u0(x))√
ρ0(x)

]
and its range is spanned by (N(x, λ) is an arbitrary nonzero scalar)

z(x, λ) :=
1

N(x, λ)

[
−fx(x, λ)− i(λ+ 1

2 u0(x))√
ρ0(x)

]
.



Semiclassical Approximation of Rε0
The WKB Method

2 Find u0:
1 Solve the leading-order equation by u0(x, λ) = c0(x, λ)y(x, λ) for

some scalar function c0 to be determined.
2 Ensure the solvability of the next equation in the hierarchy by

imposing

det
(

du0

dx
(x, λ), z(x, λ)

)
= 0.

This is a linear first-order equation for the scalar c0(x, λ):

dc0

dx
(x, λ) +

det (yx(x, λ), z(x, λ))

det (y(x, λ), z(x, λ))
c0(x, λ) = 0



Semiclassical Approximation of Rε0
The WKB Method

3 Supposing un−1 is known, find un:
1 The equation (H(x, λ)− fx(x, λ)I)un(x, λ) = un−1,x(x, λ) is solvable by

construction. Its general solution has the form

un(x, λ) = u(p)
n (x, λ) + cn(x, λ)y(x, λ)

where u(p)
n (x, λ) is any particular solution (chosen to depend

smoothly on x) and where cn(x, λ) is a scalar to be determined.
2 Ensure the solvability of the next equation in the hierarchy by

imposing the condition

det
(

dun

dx
(x, λ), z(x, λ)

)
= 0,

which is a linear equation for cn(x, λ):

dcn

dx
(x, λ) +

det(yx(x, λ), z(x, λ))

det(y(x, λ), z(x, λ))
cn(x, λ) = −det(u(p)

n,x (x, λ), z(x, λ))

det(y(x, λ), z(x, λ))
.



Semiclassical Approximation of Rε0
Oscillatory and exponential intervals

The nature of the WKB approximation (obtained by truncating the
series for u at some order) is determined by the sign of fx(x, λ)2. Given
λ ∈ R:

In x-intervals where (λ+ 1
2 u0(x))2 > ρ0(x), we have f 2

x < 0, so up to
a λ-dependent factor, f is purely imaginary. This means that the
solutions are rapidly oscillatory, and |e±f/ε| is independent of x.
In x-intervals where (λ+ 1

2 u0(x))2 < ρ0(x), we have f 2
x > 0, so up to

a λ-dependent factor, f is real. This means that the solutions are
either exponentially growing or decaying, very rapidly for small ε.

We call the two types of intervals oscillatory and exponential intervals
respectively.



Semiclassical Approximation of Rε0
Turning points

Oscillatory intervals abut exponential intervals at turning points where
(λ+ 1

2 u0(x))2 = ρ0(x) and hence H(x, λ) is singular with degenerate
eigenvalues. This information can be summarized in a picture:

Here α(x) := −1
2 u0(x)−

√
ρ0(x) and β(x) := −1

2 u0(x) +
√
ρ0(x). For

simplicity, we assume that there are at most two turning points
x−(λ) ≤ x+(λ).



Semiclassical Approximation of Rε0
Above barrier reflection

Unless λ lies in the interval [λ−, λ+] := [minx α(x),maxx β(x)], there are
no turning points at all, and all of R is an oscillatory interval. Suppose
that λ > λ+. Take fx to be strictly negative imaginary and integrate:

f (x, λ) = −i
∫ x

0

√
(λ+ 1

2 u0(y))2 − ρ0(y) dy, (positive root).

Fix the normalizing factors M and N as follows (positive square roots):

M(x, λ) := i
√

2ifx(x, λ)(λ+ 1
2 u0(x))− 2fx(x, λ)2

N(x, λ) :=
√

2ifx(x, λ)(λ+ 1
2 u0(x)) + 2fx(x, λ)2.

It follows from the characteristic equation that yTy = 1, zTz = 1 and
yTz = 0. Hence if K := (y, z), then K−1 = KT.



Semiclassical Approximation of Rε0
Above barrier reflection

Differentiating the identity K−1K = I with respect to x gives

dK−1

dx
K + K−1 dK

dx
= 0.

Since K−1 = KT, K−1Kx is skew-symmetric, and therefore

0 = (K−1Kx)11 =
det(yx, z)

det(y, z)
.

The differential equation for c0(x, λ) therefore dramatically simplifies,
having general solution c0 = c0(λ).
In the absence of turning points, the uniform accuracy of the WKB
approximation for x ∈ R can be justified rigorously, and the Jost
solution has the form

w(x, λ) = c0(λ)eiS(x)σ3/(2ε)ef (x,λ)/εy(x, λ) + O(ε).



Semiclassical Approximation of Rε0
Above barrier reflection

A direct calculation gives:

lim
x→±∞

eiλx/ε · eiS(x)σ3/(2ε)ef (x,λ)/εy(x, λ) =

exp
(

i
ε

∫ ±∞
0

[
λ+ 1

2 u0(y)−
√

(λ+ 1
2 u0(y))2 − ρ0(y)

]
dy
)[
−1
0

]
.

Therefore, taking

c0(λ) := − exp
(
− i
ε

∫ +∞

0

[
λ+ 1

2 u0(y)−
√

(λ+ 1
2 u0(y))2 − ρ0(y)

]
dy
)
,

the Jost solution satisfies

w(x, λ) = Tε0(λ)

[
e−iλx/ε

0

]
+ o(1), x→ −∞,

and

w(x, λ) =

[
e−iλx/ε

0

]
+ Rε0(λ)

[
0

eiλx/ε

]
+ o(1), x→ +∞, where



Semiclassical Approximation of Rε0
Above barrier reflection

Tε0(λ) = exp
(
− i
ε

∫ +∞

−∞

[
λ+ 1

2 u0(y)−
√

(λ+ 1
2 u0(y))2 − ρ0(y)

]
dy
)

+O(ε)

and
Rε0(λ) = O(ε).

Therefore, the reflection coefficient is small (of order ε) for λ > λ+.
Completely analogous calculations show that the same holds for
λ < λ−.

Going to higher order shows that (assuming ρ0 and u0 are smooth)
Rε0(λ) = O(εN) for arbitrary N. The reflection coefficient is small beyond
all orders in absence of turning points.



Semiclassical Approximation of Rε0
Below barrier reflection and tunneling

Now let us assume that λ− < λ < λ+ so that there are precisely two
turning points x−(λ) < x+(λ), dividing R into three intervals:

I− := (−∞, x−(λ)), in which the WKB method predicts oscillatory
solutions.
I0 := (x−(λ), x+(λ)), in which the WKB method predicts
exponentially growing and decaying solutions.
I+ := (x+(λ),+∞), in which the WKB method again predicts
oscillatory solutions.

x

1

R

T0

0

ε

ε

x x+− (λ) (λ)0− +I II



Semiclassical Approximation of Rε0
Below barrier reflection and tunneling

There are two essential issues to be addressed:
1 For x ∈ I0, the rigorous analysis of the WKB method is

complicated by exponential amplification of errors. Small errors
introduced at a point x0 ∈ I0 can only be controlled if the
initial-value problem for the ODE is solved in the direction of
exponential growth of the WKB approximation.

2 The WKB method fails entirely in neighborhoods of the two turning
points, where fx vanishes like a square root.

We will construct the scaled Jost solution w(x, λ)/Tε0(λ) which is
defined by the condition that

1
Tε0(λ)

w(x, λ) =

[
e−iλx/ε

0

]
+ o(1), x→ −∞.



Semiclassical Approximation of Rε0
Below barrier reflection and tunneling

By our previous analysis we can show that the following is valid for
−1

2 u0(−∞) < λ < λ+:

1
Tε0(λ)

w(x, λ) = Cε(λ)eiS(x)σ3/(2ε)ef−(x,λ)/εy−(x, λ) + O(ε), x ∈ I−,

where:
|Cε(λ)| = 1,

f−(x, λ) = −i
∫ x

x−(λ)

√
(λ+ 1

2 u0(y))2 − ρ0(y) dy, (positive root),

y−(x, λ) =
1

M−(x, λ)

[
f−x(x, λ)− i(λ+ 1

2 u0(x))√
ρ0(x)

]
, and

M−(x, λ) = i
√

2if−x(x, λ)(λ+ 1
2 u0(x))− 2f−x(x, λ)2, (positive root).

The error estimate of O(ε) holds pointwise in x and also uniformly on
any subinterval of I− bounded away from x−(λ).



Semiclassical Approximation of Rε0
Connection problems

For x in the other two intervals, I0 and I+, we may expect that the same
solution w(x, λ)/Tε0(λ) is approximated by linear combinations of WKB
solutions (exponential character in I0 and oscillatory character in I+).
But to obtain the coefficients in these linear combinations, we must
somehow pass over the turning points x±(λ) where WKB fails.

Some insight is gained by making the substitution

v =

[
1 1
i −i

]
ṽ

into the equation εvx = H(x, λ)v, with the result:

ε
dṽ
dx

= i
[

0 α(x)− λ
β(x)− λ 0

]
ṽ,

recalling α(x) := − 1
2 u0(x)−

√
ρ0(x) and β(x) := − 1

2 u0(x) +
√
ρ0(x).



Semiclassical Approximation of Rε0
Connection problems

Taylor expanding the coefficient matrix about x = x−(λ) where β(x)− λ
has a simple root, and keeping only the first nonzero term from each
matrix element yields

ε
dṽ
dx
≈ i
[

0 α(x−(λ))− λ
β′(x−(λ))(x− x−(λ)) 0

]
ṽ.

Note that α(x−(λ))− λ < 0 while β′(x−(λ)) > 0. Replacing ≈ with = we
obtain the first-order system form of Airy’s equation:

d2ṽ1

dy2 = yṽ1, ṽ2 = i
(εβ′(x−(λ)))1/3

(λ− α(x−(λ)))2/3

dṽ1

dy
,

where
y = β′(x−(λ))1/3(λ− α(x−(λ)))1/3 x− x−(λ)

ε2/3 .



Semiclassical Approximation of Rε0
Connection problems

Linearly independent solutions to Airy’s equation ṽ′′1(y) = yṽ1(y) are the
functions ṽ1(y) = Ai(y) and ṽ1(y) = Bi(y):

y

Ai(y)

Bi(y)

-10 -8 -6 -4 -2 2 4

-0.5

0.5

1.0

1.5 As y→ +∞,

Ai(y) =
e−2y3/2/3

2
√
πy1/4 (1 + O(y−3/2))

Bi(y) =
e2y3/2/3
√
πy1/4 (1 + O(y−3/2)),

and as y→ −∞,

Ai(y) =
1

√
π|y|1/4

[
sin
(

2
3
|y|3/2 +

π

4

)
+ O(|y|−3/2)

]
Bi(y) =

1
√
π|y|1/4

[
cos
(

2
3
|y|3/2 +

π

4

)
+ O(|y|−3/2)

]
.



Semiclassical Approximation of Rε0
Connection problems

The formal procedure for going through the turning point x−(λ) is:
1 Expand the WKB formula from region I−, v ≈ ef−(x,λ)/εy−(x, λ),

assuming that x−(λ)− x is small and positive. Keep only the
dominant terms, and eliminate x−(λ)− x in favor of the Airy
independent variable y.

2 Identify the result with linear combinations of the asymptotic forms
of Ai(y), Bi(y) and their derivatives for large negative y.

3 Replace these asymptotic forms by the corresponding asymptotic
forms now valid for large positive y, keeping only dominant terms
(in the limit y→ +∞), and eliminate y in favor of x− x−(λ).

4 Compare with expansions of WKB formulae for v valid in region I0
(exponential interval) assuming x− x−(λ) is small (as in step 1).

It is not a pretty calculation, but it is straightforward. It identifies the
proper combination of WKB formulae in region I0 corresponding to the
WKB approximation v ≈ ef−(x,λ)/εy−(x, ε) valid in region I−.



Semiclassical Approximation of Rε0
Connection problems

The result of this calculation is the following WKB formula valid for
x ∈ I0. It contains only the WKB exponential growing to the right.

1
Tε0(λ)

w(x, λ) = −Cε(λ)eiS(x)σ3/(2ε)ef0(x,λ)/εy0(x, λ)(1 + O(ε)), x ∈ I0,

where

f0(x, λ) =

∫ x

x−(λ)

√
ρ0(y)− (λ+ 1

2 u0(y))2 dy (positive root),

y0(x, λ) =
1

M0(x, λ)

[
f0x(x, λ)− i(λ+ 1

2 u0(x))√
ρ0(x)

]
, and

M0(x, λ) =
(
2f0x(x, λ)2 − 2if0x(x, λ)(λ+ 1

2 u0(x))
)1/2

(principal
branch of the square root).

Carrying out similar steps to connect through the next turning point
x+(λ), assuming that β(x+(λ))− λ and β′(x+(λ)) < 0 while
λ− α(x+(λ)) > 0, yields:



Semiclassical Approximation of Rε0
Connection problems

1
Tε0(λ)

w(x, λ) = Cε(λ)eτ(λ)/εeiS(x)σ3/(2ε)
[
ef+(x,λ)/εy+(x, λ)

− e−f+(x,λ)/εz+(x, λ) + O(ε)
]
, x ∈ I+, where

τ(λ) :=

∫ x+(λ)

x−(λ)

√
ρ0(y)− (λ+ 1

2 u0(y))2 dy (positive root),

f+(x, λ) := −i
∫ x

x+(λ)

√
(λ+ 1

2 u0(y))2 − ρ0(y) dy (positive root),

y+(x, λ) =
1

M+(x, λ)

[
f+x(x, λ)− i(λ+ 1

2 u0(x))√
ρ0(x)

]
,

z+(x, λ) =
1

N+(x, λ)

[
−f+x(x, λ)− i(λ+ 1

2 u0(x))√
ρ0(x)

]
,

M+(x, λ) = i
√

2if+x(x, λ)(λ+ 1
2 u0(x))− 2f+x(x, λ)2 and

N+(x, λ) =
√

2if+x(x, λ)(λ+ 1
2 u0(x)) + 2f+x(x, λ) (positive roots).



Semiclassical Approximation of Rε0
Extraction of the reflection and transmission coefficients

Now we recall that the coefficients Rε0(λ) and Tε0(λ) are defined by the
way that the Jost solution w(x, λ) behaves in the limit x→ +∞:

w(x, λ) =

[
e−iλx/ε

0

]
+ Rε0(λ)

[
0

eiλx/ε

]
+ o(1), x→ +∞.

Dividing by Tε0(λ) and using the WKB formula for w(x, λ)/Tε0(λ) valid for
x ∈ I+ to let x→ +∞ allows us to obtain approximations for Rε0(λ) and
Tε0(λ). We only need the following formulae:

lim
x→+∞

y+(x, λ) =

[
−1
0

]
, lim

x→+∞
z+(x, λ) =

[
0
1

]
, and as x→ +∞,

f+(x, λ) = −i(λ+ 1
2 u0(+∞))(x− x+(λ))

− i
∫ +∞

x+(λ)

[√
(λ+ 1

2 u0(y))2 − ρ0(y)− (λ+ 1
2 u0(+∞))

]
dy + o(1),

S(x) = u0(+∞)x +

∫ +∞

0
[u0(y)− u0(+∞)] dy + o(1).



Semiclassical Approximation of Rε0
Summary: asymptotic formula for Rε0
WKB analysis, plus connection analysis based on Airy functions near
turning points, therefore yields the following results:

If λ < λ− := infx∈R α(x) or λ > λ+ := supx∈R β(x), then
Rε0(λ) = O(ε) (smaller if u0 and ρ0 are smoother).
If λ ∈ (λ−, λ+), then:

Rε0(λ) = e−2iΦ(λ)/ε(1 + O(ε)) and |Tε0(λ)|2 = e−2τ(λ)/ε(1 + O(ε))

where

τ(λ) :=

∫ x+(λ)

x−(λ)

√
ρ0(y)− (λ+ 1

2 u0(y))2 dy

Φ(λ) := 1
2 S(x+(λ)) + λx+(λ)

−
∫ +∞

x+(λ)

[
σ
√

(λ+ 1
2 u0(y))2 − ρ0(y)− (λ+ 1

2 u0(y))

]
dy

σ := sgn(λ+ 1
2 u0(+∞)).



Semiclassical Approximation of Rε0
Notes about accuracy and rigor

The formal calculations described above can be justified rigorously in
some situations.

The best method for dealing rigorously with turning points is due
to Langer. He avoids Taylor expansion of the coefficient matrix to
arrive at Airy’s equation by introducing simultaneously

A nonlinear change of independent variable x 7→ y that is more than
a simple rescaling, and
A gauge transformations (pointwise linear map of the vector ṽ)

and he arrives at a rewriting of the original system as a formally
small perturbation of Airy’s equation that holds in neighborhoods
of each turning point that don’t need to shrink with ε.
The error terms in Langer’s transformation are controlled by
working with the Volterra integral equations equivalent to the
perturbed initial-value problem (Duhamel’s formula).
These methods are all quite sensitive to geometric details of the
graphs of α and β. The connection problem is solved for simple or
double turning points.



Looking Ahead

Since |Rε0(λ)|2 + |Tε0(λ)|2 = 1 holds, we will approximate Rε0(λ) for all
λ ∈ R by:

R̃ε0(λ) := χ[λ−,λ+](λ)
√

1− e−2τ(λ)/εe−2iΦ(λ)/ε.

In the next lecture, we will formulate the Riemann-Hilbert problem of
inverse scattering with R̃ε0 in place of Rε0. Then we will show how to
analyze its solution in the same asymptotic limit, ε→ 0.
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