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Aim of the talk

I Comparison of (rigorous) results obtained by Inverse
Scattering Transform (IST) methods and PDE methods,
mostly in 2D.

I What can we learn (on more general equations) from
integrable equations.

I Comments on various aspects of the rigorous justification of
asymptotic equations or systems.
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Preliminary remarks

I The classical dispersive equations or systems (Korteweg-de Vries,
Benjamin-Ono, Kadomtsev-Petviashvili, Boussinesq, Davey-Stewartson,
nonlinear Schrödinger, Green-Naghdi,..) are not derived from first
principles but as asymptotics models derived from more complex systems,
on a suitable regime of amplitude, wavelengths, wave steepness...

Those asymptotic models are not supposed to be good approximations for
all time scales, and for instance, the classical dichotomy ”blow-up in finite
time /global well-posedness” is not always very relevant here and should
be replaced by ”long time” issues (with the corresponding uniform
bounds and error estimates with the solutions of the original system).

I It turns out that a few of them are integrable by Inverse Scattering
techniques, which can provide useful insights on the dynamics on the non
integrable ones.

I As a paradigm, we will consider the water wave system from which most
of the classical nonlinear dispersive equations and systems can be derived
(as asymptotic models), and give a few details on the derivation of the
Davey-Stewartson systems.
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I The water waves system (derived by Lagrange in 1781) is a
typical example of a very relevant, but mathematically
complex, physical system which leads in various asymptotics
limits to most of the well-known nonlinear dispersive
equations or systems.

I One needs first to define small parameters :
a = typical amplitude, h = typical depth, λ = typical
horizontal wavelength (in the isotropic case, if not λx , λy ).
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ε =
a

h
, µ =

(
h

λ

)2

, ε = ε
√
µ (wave steepness)

• ε ∼ µ� 1 : Boussinesq (KdV) regime.

• ε� 1,
h2

λ2
x

∼ ε, h2

λ2
y

∼ ε2 : weakly transverse (KP) regime.

• ε ∼ 1, µ� 1 : shallow water regime (Saint-Venant, Green-Naghdi).

• ε� 1 : ”full dispersion” regime.
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I Zakharov-Craig-Sulem formulation of the water wave problem
(posed in the fixed domain, Rd , d = 1, 2), in dimensionless
form :


∂tψ + ζ +

ε

2
|∇ψ|2 − ε

2
(

1

µ
+ ε2|∇ζ|2)(Zµ(εζ)ψ)2 = 0

∂tζ + ε∇ψ · ∇ζ − (
1

µ
+ ε2|∇ζ|2)Zµ(εζ)ψ = 0,

(1)

where ζ is the elevation of the wave, ψ the trace of the velocity
potential at the free surface and Zµ(εζ) is the (nonlocal) Dirichlet
to Neumann operator
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The modulation (Schrödinger) regime

One introduces a fixed wave vector k ∈ Rd , d = 1, 2. Setting

ω = ω(k) =
(
|k| tanh(

√
µ|k|)

)1/2
the dispersion relation of surface

gravity waves, one looks for an approximate solution of the water wave
system on the form

Uapp(X , t) = U0(X , t) + εU1(X , t) + εU2(X , t), (2)

where X = (x , y) or x and U0 is a sum of a modulated wave packet and
of an induced mean mode φ

U0(X , t) =

(
iωψ(εX , εt)
ψ(εX , εt)

)
e i(k·X−ωt) + c.c. +

(
0

φ(εX , εt)

)
. (3)
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I This leads to the Benney-Roskes system coupling ψ, φ and the
leading term ζ of the surface elevation



∂τψ + ω′∂xψ − iε
1

2
(ω′′∂2

x +
ω′

|k|
∂2
y )ψ

+ εi [|k|∂xφ+
|k|2

2ω
(1− σ2)ζ + 2

|k|4

ω
(1− α)|ψ|2]ψ = 0

∂τζ +
√
µ∆φ = −2ω|k|∂x |ψ|2,

∂τφ+ ζ = −|k|2(1− σ2)|ψ|2.

(4)

I A similar system has been derived by Zakharov and Rubenchik
(1972) as a ”universal” Hamiltonian system describing the
interaction of short and long waves.
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One can derived a simplified system from the Benney-Roskes system
using the fact that at leading order, ψ travels at the group velocity
cg = ∇ω(k). This amounts in particular in replacing ∂τ in the two last
equations in the Benney-Roskes system by −cg∇, where ∇ denotes here
the gradient with respect to the variable x − cg t.
This leads to the Davey-Stewartson system : ∂τψ −

i

2

(
ω
′′
∂2
x +

ω′

|k|
∂2
y

)
ψ + i(β∂xφ+ 2

|k|4

ω
(1− α̃|ψ|2)ψ = 0

[(
√
µ− ω

′2)∂2
x +
√
µ∂2

y ]φ = −2ωβ∂x |ψ|2,
(5)

where

β = |k|(1 + (1− σ2)
ω′|k|
2ω

, α̃ =
1

4
(1− σ2)2,

α as previously while ζ is given by

ζ = ω̃′(|k|)∂xφ− |k|2(1− σ2)|ψ|2.
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I In the infinite depth case the Davey-Stewartson system
reduces to the ”hyperbolic” cubic nonlinear Schrödinger
equation derived in 1968 by Zakharov :

iψt + ψxx − ψyy + |ψ|2ψ = 0 (6)
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The complete rigorous justification of an asymptotic system, say of water waves,
involves four main steps.

I Formal derivation of the models and proof of the consistency of the asymptotic
systems with the full Euler system with free surface. This is not a dynamical
issue (this reduces to approximate a nonlocal operator by a ”simpler” (often
local) one.

I The proof of the well-posedness of the Euler system on the correct time scales
1/ε. This difficult step has been achieved in Craig (1986) in the KdV regime and
by Alvarez-Samaniego, Lannes (2008) in most of relevant regimes in absence of
surface tension (see M. Ming-P. Zhang-Z. Zhang 2011 for gravity-capillary
waves in the weakly transverse regime).

I Establishing long time, (that is on time scales of order at least 1/ε), for instance
existence of solutions to the Boussinesq systems (see below) satisfying uniform
bounds with respect to ε. Can be not easy for systems, such as Boussinesq (see
Li Xu-JCS 2012).

I Assuming the previous steps, proving the optimal error estimates (for instance
O(ε2t) in the KdV -Boussinesq regime) (see W. Craig 1986 for KdV,
Bona-Colin-Lannes 2005 for the Boussinesq systems and Lannes 2013 AMS
book for many other situations).

Jean-Claude Saut Université Paris-Sud IST versus PDE’s
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I Cf the analogy with the theory of finite difference schemes :
a finite different scheme is convergent if and only if it is
consistant and stable.
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Some 1D examples

The KdV equation {
ut − 6uux + uxxx = 0,

u(x , 0) = u0(x), x ∈ R.
(7)

Spectral problem for the Schrödinger operator

−d2ψ

dx2
+ u(·, t)ψ.

I Gardner-Greene-Kruskal-Miura (1967)
I Lax (1968)
I In the context of water waves KdV writes

ut + ux + εuux + εuux = 0.
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Decomposition in solitons

I Rigorous results by P.C. Schuur (1986), when u0 is sufficiently
smooth and decays sufficiently rapidly for |x | → ∞ :

I In absence of solitons,

sup
x≥−t1/3

|u(x , t)| = O(t−2/3), as t →∞.

I General case :

sup
x≥−t1/3

|u(x , t)− ud(x , t)| = O(t−1/3), as t →∞.
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When one does not restrict to waves going in one direction, one get
systems that are not integrable, even in one space dimension.
For instance the following Boussinesq systems for surface water waves
(obtained in the ”KdV” regime) are not integrable

{
∂tη + div v + ε div (ηv) + ε(a div∆v− b∆ηt) = 0
∂tv +∇η + ε 1

2∇(|v|2) + ε(c∇∆η − d∆vt) = 0
, (x1, x2) ∈ R2, t ∈ R.

(8)
where a, b, c , d are modelling constants satisfying the constraint
a + b + c + d = 1

3 (or 1
3 − τ for gravity-capillary waves) and ad hoc

conditions implying that the well-posedness of linearized system at the
trivial solution (0, 0).
The linear wave equation was formally derived in this context by
Lagrange....)
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Generalities on the Cauchy problem by PDE techniques{
∂tu = u′(t) = iLu(t) + F (u(t)),
u(0) = u0.

(9)

Here u = u(x , t), x ∈ Rn, t ∈ R. L is a skew-adjoint operator
defined in Fourier variables by

L̂f (ξ) = p(ξ)f̂ (ξ),

where the symbol p is a real function (not necessary a polynomial).
F is a nonlinear term depending on u and possibly on its space
derivatives. The linear part of (9) thus generates a unitary group
S(t) in L2(Rn) (and in all Sobolev spaces) which is unitary
equivalent to û0 7→ e itp(ξ)û0.
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A natural way to prove LWP, inspired from the ODE case is to try to
implement a Picard iterative scheme on the integral Duhamel formulation
of (9), that is

u(t) = S(t)u0 +

∫ t

0

S(t − s)F (u(s))ds. (10)

where as already mentioned S(t) denotes the unitary group in L2(Rn)
generated by iL.

We are thus reduced to finding a functional space

Xτ ⊂ C ([−τ,+τ ]; Hs(Rn)), τ > 0, such that for any bounded

B ⊂ Hs(Rn), there exists T > 0 such that for any u0 ∈ B, the right hand

side of (10) is a contraction in a suitable ball of XT .
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I It is only in very special situations that the choice
Xτ = C ([−τ,+τ ]; Hs(Rn)) is possible, for instance when F is
lipschitz if s = 0, or in the case of NLS when n = 1 and s > 1/2
(exercice !).

I So, in this approach, the crux of the matter is the choice of an
appropriate space Xτ . This can be carried out by using various
dispersive estimates or by using a Bourgain type space.

I This method has the big advantage (on a compactness one that we
will describe below for instance) of providing ”for free” the
uniqueness of the solution, the strong continuity in time and the
”smoothness” of the flow (actually the only limitation of the
smoothness of the flow is that of the smoothness of the
nonlinearity).

I One should not forget that all this (very often hard) work provides
merely a ”Cauchy-Lipschitz” type result, and in particular does not
give any insight on the (long time) dynamics...
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The compactness method.
The rough idea is to construct approximate solutions by
regularizing the equation, the data or the unknown (for instance by
truncating high frequencies) and then to get a priori bounds on
those approximate solutions. The fact that closed balls in infinite
dimensional normed spaces are not relatively compact gives serious
trouble.
This method does not provide neither the uniqueness of solutions
nor the strong continuity in time or the continuity of the flow map.

I Of course PDE techniques go beyond the local well-posedness
issues and can provide insights on scattering of small
solutions, finite time blow-up, existence, qualitative and
stability properties of ”localized” (solitary waves) solutions,....

Jean-Claude Saut Université Paris-Sud IST versus PDE’s
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PDE techniques for KdV

I No decomposition in solitary waves + dispersion, but very
partial results : orbital and asymptotic stability of the solitary
wave, ”multi-soliton” in the non integrable case,...
(Martel-Merle).

I Resolution of the global Cauchy problem in large Sobolev
spaces (Hs(R), s > −3

4 ) (Bourgain,Kenig-Ponce -Vega).

I Apply of course to non-integrable equations.

I The fancy local well-posedness results are useless in the
justification program. Here one just need a standard well
-posedness result for KdV, but they are needed to get global
results eg in the energy space H1(R).

Jean-Claude Saut Université Paris-Sud IST versus PDE’s
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The nonlinear Schrödinger equation (Gross-Pitaevskii)

I Zakharov-Shabat (1972). We consider the defocusing case,
with the ”correct” boundary condition (allowing ”dark” and
”black” solitons). The physical context is here nonlinear
optics or quantum fluids.

i∂tΨ = ∂xxΨ + Ψ(1− |Ψ|2) in R× R, (11)

with a finite Ginzburg-Landau energy, namely

E(Ψ) = 1
2

∫
R |∇Ψ|2 + 1

4

∫
R(1− |Ψ|2)2 ≡

∫
R e(Ψ).

E = {v ∈ H1
loc(R), s.t. E(v) < +∞},

(Natural energy space )
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I Inverse scattering

i∂tu + ∂2
xu + (1− |u|2)u = 0 (12)

Zakharov-Shabat (1973) consider the case when |u(x , t)|2 → c > 0, |x | → ∞
(propagation of waves through a condensate of constant density).
More precisely, the GP has a Lax pair (Bu , Lu), where (for c = 1)

Lu = i

(
1 +
√

3 0

0 1−
√

3

)
∂x +

(
0 ū
u 0

)
(13)

Bu = −
√

3

(
1 0
0 1

)
∂2
x +

 |u|2−1√
3+1

i∂x ū

−i∂x ū |u|2−1√
3−1

 (14)

So that u satisfies (GP) if and only if

d

dt
Lu = [Lu ,Bu ] (15)
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I As a consequence, the 1 D Gross-Pitaevskii equation has an
infinite number of (formally) conserved energies Ek , k ∈ N.
and momentum Pk , k ∈ N.

For instance,

I5 =

∫
R
{2|u|6 + 6|u|2|ux |2 + (

d

dx
|u|2)2 + |uxx |2 − 2}.

It is of course necessary to prove rigorously that the Ek and the Pk

are well defined and conserved by the GP flow, in a suitable
functional setting.

I Justified in Bethuel-Gravejat-S-Smets (2009) and used to
study the long wave (KdV) limit of GP.
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Rigorous results via IST

I I do not know of any rigorous result on the decomposition in
solitary waves.

Solitary waves :
(GP) has two types of traveling waves :

I The ”dark” solitons : vc(x) =
√

2−c2

2 tanh
(√

2−c2

2 x
)
− i c√

2
.

I The ”black” soliton :

v0(x) = tanh
( x√

2

)
.

I Note that when 0 < c <
√

2, vc(x) 6= 0,∀x .

I Orbital stability of the black soliton :
Béthuel-Gravejat-Saut-Smets (Indiana Math. J. 2008).
P. Gérard and Zhifei Zhang (2008) for a different result by
Inverse Scattering techniques.
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The Cauchy problem by PDE methods

I Zhidkov 1987 : GWP in the ”Zhidkov space”
Z 1 = {u ∈ L∞(R); ux ∈ L2(R)}.

I P. Gérard 2006-2008 : GWP in the energy space (also in
higher dimensions). See also C. Gallo (2008).

I The 2D Gross-Pitaevskii equation

iψt + ∆ψ + ψ(1− |ψ|2) = 0 (16)

is not integrable but has a very rich dynamics (Béthuel, Gravejat,
Smets, JCS, Chiron, Maris, Gallo, Gustafson, Nakanishi, Tsäı,...).
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The Benjamin-Ono equation

ut + uux −Huxx = 0, (17)

where H is the Hilbert transform.

I A (not too good) model for internal waves.

I Formally integrable by IST (Ablowitz-Fokas 1983) associated
to a nonlocal Riemann-Hilbert problem.

I Rigorous result by Coifman and Wickerhauser 1990 : GWP for
small initial data.
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The Benjamin-Ono equation by PDE techniques

I The BO equation is quasilinear (Molinet-JCS -Tzvetkov 2001)

Theorem
Let s ∈ R and T be a positive real number. Let S(t) = etH∂x .
Then there does not exist a space XT continuously embedded in
C ([−T ,T ],Hs(R)) such that there exists C > 0 with

‖S(t)φ‖XT
≤ C‖φ‖Hs(R), φ ∈ Hs(R), (18)

and∥∥∥∥∫ t

0
S(t − t ′)

[
u(t ′)ux(t ′)

]
dt ′
∥∥∥∥
XT

≤ C‖u‖2
XT
, u ∈ XT . (19)
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Note that the two conditions would be needed to implement a Picard
iterative scheme in the space XT . As a consequence one has the following
result.

Theorem
Fix s ∈ R. Then there does not exist a T > 0 such that BO admits a
unique local solution defined on the interval [−T ,T ] and such that the
flow-map data-solution

φ 7−→ u(t), t ∈ [−T ,T ],

is C 2 differentiable at zero from Hs(R) to Hs(R).

I Bad small/large frequencies interactions.

I The flow cannot be C 1 for data in Hs , s ≥ 0, Koch-Tzvetkov (2005)
(a typical property of quasilinear hyperbolic equations).
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I The ”fractional KdV equation”

ut + uux + Dαux = 0, D̂αf (ξ = |ξ|αf̂ (ξ),

is quasilinear for α < 2 and semilinear when α ≥ 2.

I The (integrable) ILW equation (replace the Fourier symbol
−isgnξ of the Hilbert transform by i(ξcothξ − 1)) is also
quasilinear.
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BO by PDE methods

I LWP below H3/2(R) was not easy ! Koch-Tzvetkov (2003),
Hs(R), s > 5/4. Kenig-Koenig (2003), Hs(R), s > 9/8.

I Breakthrough by T. Tao via a gauge transform, GWP in
H1(R), (2003).

I GWP in the energy space H1/2(R), Burq-Planchon (2007),
Ionescu-Kenig (2007).

I Of course those results do not provide any qualitative
properties of solutions.

I Orbital stability of the soliton (Albert, Bona,..).

I Uniqueness of the solitary wave (Amick, Toland).

I Decomposition in solitons ?
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The KP equations

Where does KP come from ?
We recall here how the KP equations were first derived. The (classical)
Kadomtsev-Petviashvili (KP) equations

(ut + uxxx + uux)x ± uyy = 0 (20)

were introduced (1970) to study the transverse stability of the solitary
wave solution of the Korteweg- de Vries equation which reads in the
theory of water-waves (dropping the small parameter ε)

ut + ux + uux + (
1

3
− T )uxxx = 0, x ∈ R, t ≥ 0. (21)

Here T ≥ 0 is the Bond number which measures surface tension effects

in the context of surface hydrodynamical waves.
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Actually the (formal) analysis in KP 1970 consists in looking for a weakly transverse
perturbation of the one-dimensional transport equation

ut + ux = 0. (22)

This perturbation is obtained by a Taylor expansion of the dispersion relation

ω(k1, k2) =
√

k2
1 + k2

2 of the two-dimensional linear wave equation assuming |k1| � 1

and |k2|
|k1|
� 1.

Namely, one writes formally

ω(k1, k2) ∼ ±k1

(
1 +

k2
2

k1

)
which, with the + sign say, amounts, coming back to the physical variables, to adding
a nonlocal term to the transport equation,

ut + ux +
1

2
∂−1
x uyy = 0. (23)

Here the operator ∂−1
x is defined via Fourier transform,

∂̂−1
x f (ξ) =

i

ξ1
f̂ (ξ), where ξ = (ξ1, ξ2).
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The same formal procedure is applied in KP 1970 to the KdV
equation (21), assuming that the transverse dispersive effects are
of the same order as the x-dispersive and nonlinear terms, yielding
the KP equation in the form

ut + ux + uux + (
1

3
− T )uxxx +

1

2
∂−1
x uyy = 0. (24)

By change of frame and scaling, (24) reduces to (20) with the +
sign (KP II) when T < 1

3 and the − sign (KP I) when T > 1
3 . 1

Note that KP I has a focusing character while KP II has a
defocusing one.

1. The same formal procedure could be applied to any one-dimensional dis-
persive equation leading to its quasi one-dimensional extension. It suffices to add
the nonlocal term ∂−1

x uyy .
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Note however that T > 1
3 corresponds to a layer of fluid of depth

smaller than 0.46 cm, and in this situation viscous effects due to
the boundary layer at the bottom cannot be ignored. One could
then say that the KP I equation does not exist in the context of
water waves, but it appears naturally in other contexts, for
instance as the transonic limit of the 2D Gross-Pitaevskii equation
(Béthuel-Gravejat-JCS 2008, Chiron-Rousset 2010, Chiron-Maris
2012).
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I One can justify rigorously the KP approximation of the water waves
system (see David Lannes book ”Water waves : mathematical
theory and asymptotics”, AMS 2013, and also for the other
asymptotic regimes).

I A drawback of the KP approximation is the poor error estimate
which makes KP a ”bad” asymptotic model.

In fact, see D. Lannes (2002), D. Lannes -JCS (2006), one gets

||UEuler − UKP || = o(1), (O(
√
ε) with some additional constraint)

instead of O(ε2t) which should be the optimal error estimate
(achieved in the isotropic Boussinesq regime).

I This is due to the very bad approximation of the water waves
dispersion in the neighborhood of the frequency ξ1 = 0.
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Weakly transverse Boussinesq systems

One can however derive in the KP scaling a five parameters family of weakly transverse
Boussinesq systems which are consistent with the Euler system, do not suffer from the
unphysical zero-mass constraint (due to the artificial singularity at ξ1 = 0) and have
the same precision O(ε2t) as the isotropic ones (see D. Lannes-JCS 2006) :



∂tv + ∂xζ + ε(a∂3
x ζ − b∂2

x∂tv + v∂xv +
1

2
w∂xw) +

1

2
ε3/2w∂yw = 0

∂tw +
√
ε∂y ζ + ε(−e∂2

x∂tw + w∂yw +
1

2
v∂xw) + ε3/2(f ∂2

x∂y ζ +
1

2
v∂yv) = 0

∂ζ + ∂xv +
√
ε∂yw + ε(v∂xζ + ζ∂xv + c∂3

x v − d∂2
x∂tζ)

+ ε3/2(w∂y ζ + ζ∂yw + g∂2
x∂yw) = 0,

(25)

I Unfortunately none of those systems is known to be integrable by IST as
actually the Boussinesq systems describing waves going in two directions in the
Boussinesq (KdV) regime...
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The constraint problem
To give sense to the operator ∂−1

x ∂2
y imposes a constraint on the solution

u of KP, which, in some sense, has to be an x-derivative. This is
achieved, for instance, if u ∈ S ′(R2) is such that

ξ−1
1 ξ2

2 û(t, ξ1, ξ2) ∈ S ′(R2) , (26)

thus in particular if ξ−1
1 û(t, ξ1, ξ2) ∈ S ′(R2). Another possibility to fulfill

the constraint is to write u as

u(t, x , y) =
∂

∂x
v(t, x , y), (27)

where v is a continuous function having a classical derivative with
respect to x , which, for any fixed y and t 6= 0, vanishes when x → ±∞.
Thus one has ∫ ∞

−∞
u(t, x , y)dx = 0, y ∈ R, t 6= 0, (28)
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Of course the differentiated version, namely

(ut + ux + uux + uxxx)x ± ∂2
yu = 0, (29)

can make sense without any constraint on u, and so does the Duhamel
integral representation,

u(t) = S(t)u0 −
∫ t

0

S(t − s)(u(s)ux(s))ds, (30)

where S(t) denotes the (unitary in all Sobolev spaces Hs(R2)) KP group,

S(t) = e−t(∂x−∂xxx±∂−1
x ∂2

y ) . (31)
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I The constraint is needed to define the Hamiltonian

1

2

∫ [
u2
x ± (∂−1

x uy )2 − u3

3

]
, (+ corresponds to KPI ).

(32)

I The constraint is linked to the introduction of ∂−1
x leading to

an artificial singularity on the dispersion at ξ1 = 0. As
previously mentioned, this yields poor error estimates with the
solution of the original problem, eg the water wave equations,
(see Lannes 2003) and makes KP a rather poor asymptotic
system...
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I The following theorem (Molinet -JCS-Tzvetkov 2007) holds in fact
for a class of KP equations with general dispersion in x .

Theorem
Let ϕ ∈ L1(R2) ∩ H2,0(R2) and

u ∈ C ([0,T ] ; H2,0(R2)) (33)

be a distributional solution of KP. Then, for every t ∈ (0,T ], u(t, ·, ·) is a
continuous function of x and y which satisfies∫ ∞

−∞
u(t, x , y)dx = 0 ∀y ∈ R, ∀t ∈ (0,T ]

in the sense of generalized Riemann integrals. Moreover, u(t, x , y) is the
derivative with respect to x of a C 1

x continuous function which vanishes
as x → ±∞ for every fixed y ∈ R and t ∈ [0,T ].
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Rigorous results on the Cauchy problem by IST

I Formal results by Zakharov-Manakov (1979), Manakov
(1981), Ablowitz-Fokas (1983).

I The KP II is linked to the spectral problem for the heat
equation

ψy − ψxx − u(., ., t)ψ = 0.

I The KP I is linked to the spectral problem for the Schrödinger
equation

iψy + ψxx + u(., ., t)ψ = 0
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The KP-II case

I Wickerhauser (1987) : GWP for initial data having 7 small
derivatives in L1(R2) ∩ L2(R2).

I The smallness condition is for the forward spectral problem.

The KP-II case

I Zhou (1990) : GWP for small initial data in a suitable space.

I The smallness condition is for the forward spectral problem.

I Asymptotics : see below.
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KP by PDE methods

I The two equations are of very different nature. KP II is
semilinear, while KP I is quasilinear and this makes a huge
difference in the treatment of the Cauchy problem.
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I KP II is semilinear in the sense that the Cauchy problem can
be solved by Picard iteration on the Duhamel formulation
yielding a smooth (at least C 1!) flow map u(0) 7→ u(t).

I Bourgain (1993) : KPII is locally (thus globally) well-posed for
data in L2(R2) (and also L2(T2)).

I Takaoka-Tzvetkov (2001), LWP for data in Hs1,s2(R2),
s1 > −1

3 , s2 ≥ 0.
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KPI is quasilinear

Theorem
(Molinet-S-Tzvetkov 2002).
Let (s1, s2) ∈ R2 (resp. s ∈ R). Then there exists no T > 0 such
that KPI admits a unique local solution defined on the interval
[−T ,T ] and such that the flow-map

St : u(0) 7−→ u(t), t ∈ [−T ,T ]

is C 2 differentiable at zero from Hs1,s2(R2) to Hs1,s2(R2), (resp.
from Hs(R2) to Hs(R2)).
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Remark

I As in the case of the Benjamin-Ono equation, the previous
result implies that one cannot solve the KPI equation by
iteration on the Duhamel formulation for data in Sobolev
spaces Hs1,s2(R2) or Hs(R2), for any value of s, s1, s2.
This is in contrast with the KP II equation.

I The reason is the large set of zeroes of a ”resonant function”.
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Let

σ(τ, ξ, η) = τ − ξ3 − η2

ξ
,

σ1(τ1, ξ1, η1) = σ(τ1, ξ1, η1),

σ2(τ1, ξ, η1, τ1, ξ1, η1) = σ(τ − τ1, ξ − ξ1, η − η1).

We then define

χ(ξ, ξ1, η, η1) := 3ξξ1(ξ − ξ1)− (ηξ1 − η1ξ)2

ξξ1(ξ − ξ1)
.

Note that χ(ξ, ξ1, η, η1) = σ1 + σ2 − σ. The ”resonant” function
χ(ξ, ξ1, η, η1) plays an important role in the analysis. The ‘”large” set of
zeros of χ(ξ, ξ1, η, η1) is responsible for the ill-posedness issues.
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In contrast, the corresponding resonant function for the KP II
equation is

χ(ξ, ξ1, η, η1) := 3ξξ1(ξ − ξ1) +
(ηξ1 − η1ξ)2

ξξ1(ξ − ξ1)
.

Since it is essentially the sum of two squares, its set of zeroes is
small and this is the key point to establish the crucial bilinear
estimate in Bourgain’ s method
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The bad structure of the resonant set for KPI was also the
obstruction faced by Zakharov to develop for KP I his theory of
Birkhoff normal form for KP II.
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Global well-posedness of KPI (Molinet-S-Tzvetkov 2001)

‖φ‖Z = |φ|2 + |φxxx |2 + |φy |2 + |φxy |2 + |∂−1
x φy |2 + |∂−2

x φyy |2.

Theorem
Let φ ∈ Z . Then there exists a unique global solution u of the
KP-I equation with initial data φ, such that u ∈ L∞loc(R+; Z ),
ut ∈ L∞loc(R+; H−1(R2)) 2.
Moreover M(u(t)) = M(φ), E (u(t)) = E (φ), and
u, uy , uxx ∈ L∞(R+; L2(R2)). In particular u ∈ L∞(R+ × R2).

2. In particular u ∈ Cw (R+;Z).
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I Use a compactness methods and some invariants of KPI
(technical problems to justify them !)

I Strange fact : the KP invariants do not make sense after a
certain rank.
For instance, the invariant which should control ||uxxx(., t)||L2

contains the L2 norm of ∂−1
x ∂y (u2) which does not make

sense for a non zero function u in the Sobolev space H3(R2).
Actually, one checks easily that if ∂−1

x ∂y (u2) ∈ L2(R2), then∫
R2 ∂y (u2)dx = ∂y

∫
R2 u2dx ≡ 0, ∀y ∈ R, which, with

u ∈ L2(R2), implies that u ≡ 0. Similar obstructions occur for
the higher order ”invariants”.

I Use instead a quasi invariant.

I Ionescu-Kenig-Tataru 2008 : GWP in the energy space.
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I GWP on a background of a non localized solution (e.g. the
KdV solitary wave) for KPI and KPII (Molinet-JCS-Tzvetkov
2007-2011).

I Nonlinear transverse stability (resp instability) for the KdV
soliton embedded in the KPII (resp KP I) equation
(Rousset-Tzvetkov 2009-2011).

I The nature of the instability for KPI is unknown. Numerical
simulations (Klein-S 2012) suggest a breaking of symmetry
towards lumps like or Zaitsev solitons.

I The nonlinear instability for KPI has been established by
Zakharov using IST but Rousset-Tzvetkov techniques are
general and apply to other (non integrable) equations.
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This could be described by KP II
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I Another strange fact
The KP I has an explicit soliton solution, the lump
(Manakov,-Zakharov- Bordag -Matveev 1977).

φc(x − ct, y) =
8c(1− c

3 (x − ct)2 + c2

3 y 2)

[1 + c
3 (x − ct)2 + c2

3 y 2]2
. (34)

I A rigorous theory of stability of the lump is unknown (to my
knowledge).

I One does not whether or not the lump is a ground state (see
below).
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I On the other hand generalized KP I equations (uux changed in
upux ,) have ground states solutions, defined by a variational method
(de Bouard-S 1997) ;

EKP(ψ) =
1

2

∫
R2

(∂xψ)2 +
1

2

∫
R2

(∂−1
x ∂yψ)2 − 1

2(p + 2)

∫
R2

ψp+2,

and we define the action

S(N) = EKP(N) +
c

2

∫
R2

N2.

We term ground state, a solitary wave N which minimizes the action
S among all finite energy non-constant solitary waves of speed c .
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It was proven in (deB-S) that ground states exist if and only if
c > 0 and 1 ≤ p < 4. Moreover, when 1 ≤ p < 4

3 , the ground
states are minimizers of the Hamiltonian EKP with prescribed mass
(L2 norm). They are then orbitally stable.

I The uniqueness (up to the obvious symmetries), of the ground
states is unknown. Also one does know whether or not the
lump is a ground state (but all solitary waves cannot decay
faster than 1/r 2 (deB-S 1997) and moreover they have the
same asymptotics as the lump, Gravejat 2008).

I As for BO solitary waves, the slow decay of KP solitary waves
is due to the non smoothness of the dispersion symbol.
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Asymptotics of small solutions to KP

I KP II : precise asymptotics (Kiselev 2001). The global decay
is 0(1/t) but the precise asymptotics is different in different
directions, described by the variable ξ = x/t and η = y/t.

I KP I : formal analysis (Manakov-Santini-Takchtadzhyan
1980).

I For the generalized KP I/II equation

ut + upux + uxxx ± ∂−1
x uyy = 0, (35)

when p > 1, decay of the sup norm of small solutions as
O(1/t). (Hayashi-Naumkin-JCS 1999).
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I As for other scalar equations (KdV, BO,..) the fancy LWP
results for KP are not necessary in the justification program.
One just need an easy LWP in Hs(R2), s large enough. On
the other hand they are crucial to justify the mass, energy,..
conservation and the orbital stability of KP I ground states.
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Open questions around KP

I What is the meaning of the ”KP hierarchy” since it is the
sequence of Hamiltonian flows for Hamiltonian which do not
make sense after a certain rank...

I Are the smallness conditions on the initial data imposed for
IST techniques really necessary ?

I Is the explicit lump of KP I a ground state in the previous
sense.

I Are the ground states unique (up to trivial symmetries).

I Groves and Sun (ARMA 2008) have proven the existence of
”lump like” solutions to the capillary-gravity waves system.
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I As far as the global well-posedness of the Cauchy problem is
concerned, PDE methods win against IST techniques since
they yield global well-posedness of arbitrary large solutions.
On the other hand they do not information on the large time
behavior of solutions. For instance, in the defocussing KP II
case, one might decay of the L∞ norm of all solution as 1/t,
as it is the case in the linear case (JCS 1993).

I Things are less clear for the focusing KP I. What is the
dynamics for large t?

I Nature of the transverse instability of the KdV solitary wave
(see next slide) ?

Jean-Claude Saut Université Paris-Sud IST versus PDE’s



Outline
Introduction

Some 1D examples
The KP equations

The Davey-Stewartson systems

Where does KP come from ?
KP by PDE methods
Open questions around KP

Transverse instability of the KdV solitary wave for KP I (Klein-S
2010)
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The Davey-Stewartson systems

I The Davey-Stewartson-systems were historically derived from
the water-waves system as an asymptotic model in the
modulation regime.

I They are a limiting system of a more general one, the
Benney-Roskes system in the theory of water waves, derived
also by Zakharov and Rubenchik as a ”universal system for
the description of the interaction between short and long
(acoustic type) waves”.

Jean-Claude Saut Université Paris-Sud IST versus PDE’s



Outline
Introduction

Some 1D examples
The KP equations

The Davey-Stewartson systems

DS II type systems
DS I type systems

DS I by IST . Comparison with elliptic-hyperbolic DS
Numerical simulations of elliptic-hyperbolic DS
The elliptic-elliptic case

The Benney-Roskes, Zakharov-Rubenchik system


i∂tψ = −ε∂2

zψ − σ1∆⊥ψ + (σ2|ψ|2 + W (ρ+ D∂zφ))ψ,

∂tρ+ σ3∂zφ = ∆φ− D∂z |ψ|2,
∂tφ+ σ3∂zφ = − 1

M
ρ− |ψ|2.

(36)
Here ∆⊥ = ∂2

x + ∂2
y or ∂2

x , ∆ = ∆⊥ + ∂2
z ,σ1, σ2, σ3 = ±1, W > 0

measures the coupling with acoustic type waves, M ∈ (0, 1) is a
Mach number, D ∈ R and ε ∈ R is a nondimensional dispersion
coefficient.
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The Davey-Stewartson systems have in fact the general form

iψt + a∂2
xψ + b∂2

yψ = (ν1|ψ|2 + ν2∂xφ)ψ,
c∂2

xφ+ ∂2
yφ = −δ∂x |ψ|2,

(37)

where one can assume (up to a change of unknown) b > 0 and
δ > 0.
Classification : (37) is

elliptic-elliptic if (sgn a, sgn c) = (+1,+1),
hyperbolic-elliptic if (sgn a, sgn c) = (−1,+1),
elliptic-hyperbolic if (sgn a, sgn c) = (+1,−1),

hyperbolic-hyperbolic if (sgn a, sgn c) = (−1,−1).
(it does not seem to occur in a physical situation).
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I In the context of water waves, the equation for φ is hyperbolic

when
C2
g

gh > 1, where cg = dω
dκ , ω

2 = gκ(1 + κ2T )tanh κh,

κ =
√

k2 + l2, and where T ≥ 0 is the surface tension
coefficient.

I When T = 0 (purely gravity waves), one has
C2
g

gh < 1, and the
corresponding DS systems are of type (±,+).
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The so-called DS I and DS II systems are integrable, but very
particular cases of respectively elliptic-hyperbolic and
hyperbolic-elliptic Davey-Stewartson systems. In fact they
correspond to a very special choice of the coefficients in (37)
obtained in the limit kh→ 0, ε = κa� (kh)2 that has only a
limited physical relevance.
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The Davey-Stewartson II type systems
We consider here the Davey-Stewartson system that appears in deep
water which we write for convenience as{

iut + uxx − uyy = α|u|2u + βuφx ,
∆φ = ∂

∂x |u|
2.

(38)

I The Davey-Stewartson system (38) is integrable by the Inverse
Scattering method (see below for rigorous results) when

α +
β

2
= 0.

It is then known as the Davey-Stewartson II (DS II) system. The
case β < 0 corresponds to the defocusing DS II, β > 0 to the
focusing DS II. We will keep this terminology in the non integrable
case.
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Non existence of localized traveling waves (Ghidaglia-JCS 1996)

Theorem
The Davey-Stewartson system (38) can possess a non zero
localized traveling wave solution only if

(i) β < 0, α ∈ (0,−β).

Moreover, (38) possesses a nontrivial radial traveling wave solution
if and only if

(ii) β < 0, α + β
2 = 0.
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On the other hand Arkadiev-Pogrebkov-Polivanov (1989) have
exhibited a family of explicit traveling waves (the lump solitons) for
the focusing integrable DS II system having the profile(c = 0) :

ulump(x , y , t) =
2ν̄exp (2i Im (λz) + 4i Re (λ2)t)

|z + 4iλt + µ|2 + |ν|2
,

where z = x + iy and λ, ν, µ are arbitrary complex constants. Note
that the traveling wave profile |u(x , y , 0)| is radial in appropriate
variables.

I Numerical simulations (Klein-JCS 2013) suggest that the lump
solution does not persists in the non integrable focusing DS II.
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The Cauchy problem via PDE techniques

I Reduces to a ”nonelliptic” NLS with a nonlocal term :

iut + uxx − uyy = α|u|2u + uL(|u|2),

where L̂f (ξ) =
ξ2

1
|ξ|2 f̂ (ξ).

I The Strichartz estimates are the same as for the usual
Schrödinger group and one obtains the same results as for the
cubic 2D NLS (Ghidaglia-JCS 1990) : LWP for initial data in
L2(R2) or H1(R2) global for small L2 data.
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A blow-up property of the focusing DS II

I On the other hand, Ozawa (1992) by using a special case of
the lump and a pseudo-conformal transform has constructed a
solution of the Cauchy problem in the focusing integrable case
whose L2 norm blows up in finite time (the solution converges
to a Dirac measure having as mass the L2 norm of the initial
data). The solution persists after the blow-up time and
disperses as t →∞.
This blow-up is carefully studied numerically in Klein-Roidot
2012 where its instability is suggested. On the other hand, the
numerical simulations of Klein-S (2014) suggest that this
blow-up does not persist in the non integrable case.
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Blow-up in the non integrable focusing DS II ? (Klein-S 2014)
Write DS II as

iε∂tψ + ε2∂xxψ − ε2∂yyψ + 2ρ∆−1[(∂yy + (1− 2β)∂xx) |ψ|2]ψ = 0, (39)

which involves the order zero nonlocal operator

∆−1[(∂yy + (1− 2β)∂xx)].

Note that the integrable case β = 1 is distinguished by the fact that the
same hyperbolic operator appears in the linear and in the nonlinear part.
In this case the equation is invariant under the transformation x → y and
ψ → ψ̄ and (39) can be written in a ”symmetric” form as

iε∂tψ + ε2�ψ − 2ρ[(∆−1�)|ψ|2]ψ = 0, (40)

where � = ∂xx − ∂yy .
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DS II, β = 0.9, ε = 0.1, t = 0.6, ψ0 = exp(−x2 − y 2).

Jean-Claude Saut Université Paris-Sud IST versus PDE’s



Outline
Introduction

Some 1D examples
The KP equations

The Davey-Stewartson systems

DS II type systems
DS I type systems

DS I by IST . Comparison with elliptic-hyperbolic DS
Numerical simulations of elliptic-hyperbolic DS
The elliptic-elliptic case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

t

||s
|| '

DS II, β = 0.9, ε = 0.1, t = 0.6, ψ0 = exp(−x2 − y 2), ||ψ(·, t)||∞

Jean-Claude Saut Université Paris-Sud IST versus PDE’s
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DS II, β = 1.1, ε = 0.1, t = 0.6, ψ0 = exp(−x2 − y 2).
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The appearance of blow-up is a very subtle and surprising
phenomenon in DS II type systems. Recall that one does not
expect blow-up in the cubic hyperbolic NLS equation

iψt + ψxx − ψyy + |ψ|2ψ = 0,

which does not possess any localized solitary waves (Ghidglia-JCS
1995).
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Global results by IST
Write the integrable DS-II equation on the form

qt = 2iqx1x2 + 16i [L(|q|2)|q|, q(·, 0) = q0, (41)

where L is defined as above and the + sign corresponds to the
focusing case, the − sign to the defocusing case.

I Nice results by Beals-Coifman (1990), L-Y.Sung (1994-1995),
Perry (2012).
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Theorem
Sung (1995)
Let q0 ∈ S(R2). Then DSII possesses a unique global solution u such
that the mapping t 7→ q(·, t) belongs to C∞(R,S(R2)) in the two cases :
(i) Defocusing.

(ii) Focusing and |q̂0|1|q̂0|∞ < π3

2

(√
5−1
2

)2

.

Moreover, there exists cq0 > 0 such that

|q(x , t)| ≤ cq0

|t|
, (x , t) ∈ R2 × R∗.

I Note that such a result is unknown for the general non integrable
DS-II systems, and also for the nonelliptic cubic NLS.
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Remark
1. Sung obtains in fact the global well-posedness (without the
decay rate) in the defocusing case under the assumption that
q̂0 ∈ L1(R2) ∩ L∞(R2) and q0 ∈ Lp(R2) for some p ∈ [1, 2).
2. Recently, Perry (2012) has precised the asymptotics in the
defocusing case for initial data in
H1,1(R2) = {f ∈ L2(R2) such that ∇f , (1 + | · |)f ∈ L2(R2)},
proving that the solution obeys the asymptotic behavior in the
L∞(R2) norm :

q(x , t) = u(·, t) + o(t−1),

where u is the solution of the linearized problem, a result which is
out of reach of pure PDE techniques.
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I Interaction of N-lumps with a line soliton for the focusing DS
II (Fokas-Pelinovsky-C. Sulem 2001).
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I The results obtained by IST techniques on the (integrable) DS
II system lead to conjecture that pure dispersion governs the
dynamics in the defocusing case (and probably in the
focusing, non-integrable case). This is also suggested by
numerical simulations (C.Klein, JCS 2014).
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DS II, β = 0.9, ε = 0.1, ψ0(x , y) = exp(−x2 − y 2), at different
times
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DS I type systems

I The DS I type systems are quite different from the other DS
systems. Actually, solving the hyperbolic equation for φ (with
suitable conditions at infinity) yields a loss of one derivative in
the nonlinear term.

I Even the rigorous conservation of the Hamiltonian leads to
serious problems.
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The elliptic-hyperbolic DS system can be written after scaling as i∂tψ + ∆ψ = χ|ψ|2ψ + bψφx

φxx − c2φyy =
∂

∂x
|ψ|2.

I The integrable DS I sytem corresponds to χ+ b
2 = 0.
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Solvability of the equation for φ.

Let c > 0. Consider the equation

∂2φ

∂x2
− c2 ∂

2φ

∂y 2
= f in R2 (42)

with the boundary condition

lim
ξ→+∞

φ(x , y) = lim
η→+∞

φ(x , y) = 0 (43)

where ξ = cx − y and η = cx + y .
Let K = Kc the kernel

K (x , y ; x1, y1) =
1

2
H(c(x1 − x) + y − y1)H(c(x1 − x) + y1 − y)

where H is the usual Heaviside function.
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Lemma
(Ghidaglia-JCS 1990). Then, for every f ∈ L1(R2), the function
φ = K(f ) defined by

φ(x , y) =

∫
R2

K (x , y ; x1, y1)f (x1, y1)dx1dy1 (44)

is continuous on R2 and satisfies (42) in the sense of distributions.
Moreover, φ ∈ L∞(R2), (∂φ/∂x)2 − c2(∂φ/∂y)2 ∈ L1(R2) and we have
the following estimates

sup
(x,y)∈R2

|φ(x , y)| ≤
∫
R2

|f |dxdy (45)

∫
R2

∣∣∣∣∣
(
∂φ

∂x

)2

− c2

(
∂φ

∂y

)2
∣∣∣∣∣ dxdy ≤ 1

2c

(∫
R2

|f |dxdy

)2

. (46)
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Remark

1. No condition is required as ξ or η tends to −∞.
2. In general, ∇φ /∈ L2(R2) even if f ∈ C∞0 (R2), but Lemma 8

allows to solve the φ equation as soon as ψ ∈ H1(R2) for
instance.
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The DS I type system possesses the formal Hamiltonian

E (t) =

∫
R2

[
|∇ψ|2 +

χ

2
|ψ|4 +

b

2
(φ2

x − c2φ2
y )

]
dxdy

Lemma 8 allows to prove that this Hamiltonian makes sense in an
H1 setting for ψ (see (GS). Proving its conservation on the time
interval of the solution is an open problem as far as we know (this
would lead to global existence of a weak solution).
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DS I type by PDE methods

I The first result is due to Linares-Ponce (1993) and the best known
results are due to Hayashi-Hirata (1996) and Hayashi (1997).

After rotation, one can write the DS-I type systems as


i∂tψ + ∆ψ = i(c1 +

c2

2
)|ψ|2ψ − c2

4

(∫ ∞
x

∂y |ψ|2dx ′ +

∫ ∞
y

∂x |ψ|2dy ′
)
ψ

+
c2√

2
((∂xφ1) + ∂yφ2))ψ,

where c1, c2 ∈ R and φ satisfies the radiation conditions

lim
y→∞

φ(x , y , t) = φ1(x , t), lim
x→∞

φ(x , y , t) = φ2(y , t).
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Theorem
(Hayashi 1997)
Assume ψ0 ∈ H2(R2), φ1 ∈ C (R; H2

x ) and φ2 ∈ C (R; H2
y ). Then

there exist T > 0 and a unique solution
ψ ∈ C ([0,T ]; H1) ∩ L∞(0,T ; H2) with initial data ψ0.

I The proof uses in a crucial way the smoothing properties of
the Schrödinger group.
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Global existence and scattering of small solutions (Hayashi-Hirata
1996).

Hm,l = {f ∈ L2(R2); |(1− ∂2
x − ∂2

y )m/2(1 + x2 + y2)l/2f |L2 <∞}.

Theorem
Let ψ0 ∈ H3,0 ∩ H0,3, ∂j+1

x φ1 ∈ C(R; L∞x ), ∂j+1
y φ2 ∈ C(R; L∞y ), (0 ≤ j ≤ 3), ”small

enough”. Then

I There exists a solution ψ ∈ L∞loc(R;H3,0 ∩ H0,3) ∩ C(R;H2,0 ∩ H0,2).

I Moreover
||ψ(·, t)||L∞ ≤ C(1 + |t|)−1(||ψ||H3,0 + ||ψ||H0,3 ).

There exist u± such that

||ψ(t)− U(t)u±||H2,0 → 0, as → ±∞.

where U(t) = e it(∂2
x +∂2

y ).

Jean-Claude Saut Université Paris-Sud IST versus PDE’s



Outline
Introduction

Some 1D examples
The KP equations

The Davey-Stewartson systems

DS II type systems
DS I type systems

DS I by IST . Comparison with elliptic-hyperbolic DS
Numerical simulations of elliptic-hyperbolic DS
The elliptic-elliptic case

DS I by IST. Comparison with elliptic-hyperbolic DS

I Existence of coherent structures (dromions) for DS I with
non-trivial boundary conditions
(Boiti-Leon-Martina-Pempinelli 1988, Fokas-Santini 1990).

I Probably not physically relevant.

I Stability of the dromion (Kiselev (2000).

I I don’t know of similar results in the non-integrable case, or
any stability analysis by PDE techniques.
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I Global existence and uniqueness of a solution
ψ ∈ C (R;S(R2)) of DS I for data
ψ0 ∈ S(R2), φ1, φ2 ∈ C (R;S(R)) (Fokas-Sung 1992). The
solutions with trivial boundary conditions φ1 = φ2 = 0
disperse as 1/t (Kiselev 1998).

I Numerical simulations for elliptic-hyperbolic DS systems,
including DS I (Besse-Bruneau 1998) confirm the dispersion
of solutions of DS I with trivial boundary conditions and
suggest that the dromion is not stable with respect to the
coefficients, that is it does not persist in the non-integrable
case (need more work...).
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Numerical simulations of elliptic-hyperbolic DS (Besse-Bruneau 1998)

They consider the version i∂tψ + ∆ψ = −|ψ|2ψ + bψφξ+η

φξη =
σ

4
(|ψ|2ξ + |ψ|2η), ξ = cx − y , η = cx + y .

I Observe that when b = 0 (focusing cubic NLS) there is a blow-up in
finite time, say from a gaussian initial data
ψ0(x , y) = 4exp(−x2 − y 2).

I A finite time blow-up seems to occur when σ > 0 and b > 0. When
σ < 0, a stabilization seems to occur when b < 0.
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The elliptic-elliptic case

{
i∂tψ + ∆ψ = χ|ψ|2ψ + bψφx

∆φ = ∂x |ψ|2.

I Inverting the equation for φ reduces to a cubic NLS with the extra
nonlocal (order zero) term −bψ(−∆)−1∂2

x |ψ|2.
I Energy :

E (ψ) =

∫
R2

(
|∇ψ|2 +

1

2
(χ|ψ|4 + b(φ2

x + φ2
y ))

)
dxdy .

I Local well-posedness on [0,T ∗] for initial data ψ0 in L2, H1, and
Σ = {f ∈ H1(R2); (x2 + y 2)1/2f ∈ L2(R2)}. (Ghidaglia-JCS 1990).
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A blow-up result (Ghidaglia-JCS 1990)

Theorem
Let Σ− the set of u ∈ Σ such that E (u) < 0. Then

1. The set Σ− is not empty if and only if χ < max (−b, 0).

2. For χ ≥ max (−b, 0), the local solution is global : T ∗ = +∞.
3. For χ < max (−b, 0), and for every ψ0 ∈ Σ−, the maximal

solution on [0,T ∗) satisfies T ∗ = +∞.
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I A refined analysis of the blow-up à la Merle-Raphël (2005) is
missing.

I Existence and stability properties of ground states solutions :
R. Cipolatti (1992,1993), Sulem-Sulem-Wang (1993), M.
Ohta (1995).

I Numerical simulations of the blow-up :
Papanicolaou-Sulem-Sulem-Wang (1994).
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Some conclusions

I In the KdV and DS II cases, IST provides results out of reach of
pure PDE techniques and might give hints on the dynamics of
”close” non-integrable equations.

Note however that some properties of DS I (existence of dromions),
or of the focusing DS II (existence of lumps, blow-up in finite time)
do not seem to persist in the corresponding non-integrable cases.

I For BO and KP equations, PDE techniques provide nice GWP
results, without information on the dynamics.

I The DS I type systems need more numerical simulations.

I An important issue (not seriously discussed here) is to decide
whether or not the various phenomena observed in the asymptotic
models are relevant to the original system (eg the water wave
system). Actually they might occur after the model has ceased to
be a relevant approximation.
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I In the modulation regime for instance, full dispersion models
are probably more relevant (valid for a larger band of
frequencies), see D. Lannes (2013) and C. Obrecht 2014 for
Benney-Roskes and DS type full dispersion systems.None of
them is integrable...
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The full dispersion DS system

∂τψ +
i

ε2
[ω(k + εD′)− ω − εω′D′x ]ψ

+ i(β∂′xφ+ 2
|k|4

ω
(1− α̃)|ψ|2)ψ = 0( |D′| tanh(ε

√
µ|D′|)

ε
+ ω′

2
∂′2x

)
φ = 2ωβ∂′x |ψ|2.

(47)

Here the time and space derivatives (indicated by a ′) are taken with respect to the
slow time and space variables t′ = εt and X ′ = εX and D′ denotes the operator 1

i
∇′.

We have used furthermore used the following notations

k = |k|ex , ω(k) = ω̃(|k|), with ω̃(r) = (r tanh(
√
µr))1/2,

ω = ω̃(|k|), ω′ = ω̃′(|k|), ω′′ = ω̃′′(|k|)

σ = tanh(
√
µ|k|), α = −

9

8σ2
(1− σ2)2, α̃ = α+

1

4
(1− σ2)2,

β = |k|
(

1 + (1− σ2)
ω′|k|
2ω

)
.

(48)
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