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Exact blow-up solutions to the Cauchy problen
the Davey-Stewartson systems

By TorrRU Ozawaft
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Bdtimet n211, 91405 Orsay Cedex, France

We present exact blow-up solutions to the Cauchy problem for the 1
Stewartson systems. It is shown that for any prescribed blow-up time ther
exact solution whose mass density converges to the Dirac measure as time goe;
blow-up time and that the solution extends beyond the blow-up time and
like the free solution as time tends to infinity.

1. Introduction

The time evolution of two-dimensional surfaces of water waves has been descri
Davey & Stewartson (1974) and Djordejevic & Redekopp (1977) und
assumption that the water waves are subject to (1) weakly nonlinear modul
(2) slowly varying modulations, (3) propagation along nearly z-direction, an
balance of these three effects. In suitably rescaled coordinates, the 1
Stewartson (DS) systems are the following:

10,u+0Gu+u=Auutud, ¢ u,
2 +moZe =0 |ul®.

Here u is a complex-valued function of space and time variables (z,y,¢) anc
real-valued function of (x,y,t). The four parameters (o, A, u, m) are real and
have been normalized as |o| =|A] = 1. The functions » and @ are related
amplitude and the mean velocity potential of the water wave, respectively.

For some special choices of parameters DS become integrable systems and s
transform techniques can be applied (see Anker & Freeman (1978), Fokas & §
(1988) and their references). In the full general case except the hyperbolic-hyp
case, i.e. o,m < 0, Ghidaglia & Saut (1990) studied the Cauchy problem for
functional analytic methods similar to those of the nonlinear Schridinger eqt
ie. 0>0,u=0 (see Ginibre & Velo 1979; Brezis & Gallouet 1980; Kato
Cazenave 1989) and proved the solvability in the Lebesgue space L? = L%(R?) ¢
Sobolev space H'= H'(R*?). In the elliptic-hyperbolic case, i.e. o> 0,
Tsutsumi (1991) obtained LP(R?*)-decay estimates of the solutions for any
2 <p<o0.

The purpose of this paper is to study the blow-up or self-focusing proper
solutions of DS. In the elliptic—elliptic case, i.e. o, m > 0, Ghidaglia & Saut
studied the blow-up problem. In this case the blow-up phenomena is e
analogous to that of the nonlinear Schrédinger equations (see Glassey
Tsutsumi 1984 ; Weinstein 1986; Nawa & Tsutsumi 1989; Merle & Tsutsumi
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In this paper, following Nawa & Tsutsumi (1989) and Weinstein (1986), = present
exact blow-up solutions of DS in the hyperbolic-elliptic case, ie. o <v,m > 0.
Moreover, we describe discrepancies between the nonlinear Schrédinger equation and
DS in the hyperbolic—elliptic case.

2. Invariance of the Davey-Stewartson systems

We start with some basic character of DS. DS are invariant under the following
transformations: (1) Time translations ¢ - ¢ +¢,. (2) Space translation:s (,y) =~ (x+z,,
y+y,)- (3) Phase transformations (u,p)— (e'%u,p), 0 € R. The associated conserved
quantities are given respectively by (see Ghidaglia & Saut 1990):

E(u) = oo, wll§+ 10, ull3 + 3(Aluli + pllo @l +umlld, @l3), 3)
P(u) = Im (u, Vu), (4)
M(w) = |lul3- (5)

Here |||, denotes the L?(/R*)-norm and (-, ) denotes the L?-scalar product. E, P,
and M are the energy, momentum, and mass, respectively. DS have another special
invariance (u,)— (Cu, Cp), where

(Cu) (x,y,t) = (a+bt) texp (ib(4(a+bt)) Y (oa® +y?) u(X, Y, T), (6)
(Cop) (w,y, ) = (a+b0) p(X, ¥, 1), (7)
X=(a+bt) 2, Y= (a+bt)y, T = (atbt)(c+dl),
b .
and [Z d}ESLz(R),

ie.a,b,c,de Rand ad—bd = 1. This may be the first time that the transformations
(6) and (7) are noticed, although (6) has been known for the nonlinear Schr.b'dinger
equation (see Ginibre & Velo 1982; Weinstein 1986; Nawa & .qutsuml 1989;
Cazenave & Weissler 1990, 1992). The associated conserved quantity is

ol (@+2i0td,) ull3+ || (y +2it0,) w3 + 25 Al wll3 + ullO, I3 +pmlid, @l3).  (8)

The corresponding conserved quantity is well known for the nonlinear Schrodinger
equation.

3. Exact blow-up solutions

We look for exact blow-up solutions by using the transformatigns (C,C). By the
analogy with the well-known lump solution for the KdV equation, we first seek
special solutions of the simple form

w@,y,t) = 1/fl@,y), e@.y.1) =3, fley)/fle.y) =vyenflz.y),
where f(z,y) = 1+ax®+ fy?. Substituting ¢ into the left-hand side of (2), we have
Ro+mdy =2y 0,((a+pm)+a(fm—a)x®+ Bla—pm)y*)/f?),
so that we obtain & = fm and y = ja. Similarly, we have
10, u+ocu+0u—AlulPu—pnd, @ u
= —((4a0 + 46+ 2A +p) — (1200 — 45+ p) 2* + f(dao — 1284+ u) y*)/ (2f?),
Proc. R. Soc. Lond. A (1992)
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which implies mo = —1 and g = —2A = 164. Therefore,

0. y) = (1+a(@d—oy?),

Va(z,y) = Bl +a(@?—oy?)
are solutions of DS provided that mo = —1 and g = —2) = 16a/m. When
and a > 0, we have v,eL? and

loll, = (/)
Now let u, = C,, (pazé'lﬁa with >0, ab#0. Let m=1, o =—1, p=
160/m. Then DS is hyperbolic-elliptic type and (u,,¢,) solves DS. Th
condition becomes
Uy(@,y,0) = a” exp (—ib(4a) " (2* —y?)) v (2, y).

Moreover, for any ¢t€ R with a+bt # 0

lua@®ll = llv,ll* = (m/x,

while by a direct calculation,
(@2 +y2)huy(t), Vau,(t)é¢ L

for any t€ R. Therefore our solution w, is an L?-solution, but not an H'-sol
any case. On the other hand,

(@ +9°) P, (1), (— 4)u,(t) e L*
for any s,i€ B with 0 <s < 1 and a+bt # 0. The last assertion follows by u
Besov semi-norms defined in terms of the modulus of continuity and em

theorems of the homogeneous Sobolev spaces in a way similar to the proof of
2.4 in Hayashi & Ozawa (1988).

We now describe the formation of blow-up of the solution u,(f). For simpl
assume ab < 0 and put T'= —a/b. The mass density takes the form

luo(@, 9, 6)|* = €2 (1 +ae (@ +42))* = ¢ o, (e, e7y) |°
with ¢ = a+bt = —b(T—t). By (11), we find
[u ()P~ (T/a)d in &' as t—>T,
where & denotes the Dirac measure at the origin. Moreover, for any s with 0
we have by letting ¢ — 7,
@+ ™) () |, = 1BIFIT — 7] (2% + %)%, ]|, 0,
I (=4)"u, ()11, 2 Cll (* +y°) "2, (8) |
= OB IT =7l (@ + y*) v, ]|, > o0,

where we have used the Hardy type inequality (sce Herbst 1977).

Therefore the blow-up process of the solution u,(t) is summarized as follo
start with «,(0) given by (12). The initial state u,(0) looks like a lump aro
origin and has an algebraic decay in space, or equivalently, in two ho
directions. Due to the phase factor, u,(0) is not radial. By Ghidaglia
uniqueness result in L?, the unique solutions of DS are given by u, = Cv,, p,

As time increases, the solution w,(f) is localized at the origin and the mass
|u,(t)|* takes its maximum value ¢ = b=%(T'—¢)"2 at the origin. As time goes
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blow-up time 7, |u,(f)|* tends to the Dirac measure with total mass flu, ()12
conserved. Every regularity breaks down at the blow-up time as described in (16).
The solution wu,(t), however, exists after the blow-up time and gains the original
regularity. As time goes to infinity, the mass density is dispersed from the origin and
decays like {72 If we reverse the time direction, we see that for negative times the
solution wu,(¢) is stable in the sense that the blow-up phenomenon does not occur.

When ab > 0, we have another blow-up solution with negative blow-up time which
is stable for positive times.

The blow-up process is a natural consequence of the nonlinearity since the linear
partial differential operator 10, —024-02, or rather the associated propagator U(t) =
exp (if(—05+0?2)) has the dispersive and smoothing effects. The effect of the
nonlinearity, however, is dominant up to the blow-up time and loses its influence for
large times because of the dispersive effect of the linear term. To be more specific, the
solution u,(f) behaves like the free solution in the sense that there is a unique feL?
satisfying

lu, @) —U@) fll,—~0 as t—>+o0. (17)
Indeed, fis given explicitly by f= U(a/b)g with
9@, y) = i(2eb) " Ko((da) Ha?+ 7)),

where K| is the modified Bessel function of the second kind of order zero. The proof

uses the following three facts:
(1) U(t) has the representation U(t)y = S(¢) D(t) #S(t) ¥,, where

S(0) = exp (4 (e y0),  (DOY) (@) = (2007202, 20y),
P E) = @0 | exp(—iak—iyn o) ey, Pley) = (2.
e

(2) S(t) =1 strongly on L? as t >+ c0.

(3) (F0,) (&) = a Ky 3£+ ).

We finally remark that in view of (13) the total mass of the initial data u,(0) may
be chosen arbitrarily small or large by changing «. Consequently, there are blow-up
solutions with total mass arbitrarily small. In addition to the property (17), this is
a sharp contrast to the case of the nonlinear Schrédinger equation. These new
features reflect the hyperbolicity of the operator —o2+d2.
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